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Abstract—Time-varying formation problem for
discrete-time multi-agent systems with double-
integrator dynamics is investigated in this article,
where the transmission delays and switching topology
are discussed. The transmission time-delay can
be nonuniform and the graph of the topology is
not required to include a spanning tree all the
time. A time-varying formation problem is defined;
the corresponding formation vector and formation
reference function are given. Based on the neighboring
states, a linear formation protocol is presented. Using
the state transformation method and properties
of the stochastic matrix, sufficient conditions for
the discrete-time multi-agent systems to complete
the specified time-varying formation are given. A
formation problem of four agents in a two-dimensional
surface is simulated to illustrate the effectiveness of the
protocol considering delays and switching topology.

Index Terms—discrete-time, multi-agent systems,
time-delay, switching topology

I. INTRODUCTION

Formation control research for multi-agent systems has
attracted widespread attention in the past few decades. As
an important branch of multi-agent cooperative control,
formation control can overcome the shortcomings of single
agent’s insufficient capability through the cooperation of
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multiple agents. Formation control technology can be ap-
plied in many aspects, such as: target enclosing [1], nuclear
radiation detecting [2], wireless backbone implementation
[3], and target localization [4].

Based on the first-order formation algorithms in the lit-
erature, second-order formation algorithms are presented
in [5] to handle the formation problem of double-integrator
system. The finite-time formation problem is investigated
in [6], where nonlinear formation protocols are presented
based on nonlinear consensus protocols to ensure that
the formation can be completed in the finite time. Time-
varying formation problem of general multi-agent systems
is investigated in [7]; time-delays are taken into considera-
tion and those are assumed to be constant. The formation
problems of a Unmanned Aerial Vehicle (UAV) system
with transmission delays are addressed in [8] and the
transmission delays can be time-varying. In [9], formation
problem of mobile robot systems with switching topology
is studied; an improved feedback controller is proposed.
However, the system models in [6]-[9] are all based on
continuous-time model.

With the development of digital computing systems,
increasing researches on the formation control are based
on discrete-time system. Compared to continuous-time
controller that needs continuous communication, discrete-
time controller can effectively reduce the communication
pressure because the transfer of control instruction is
intermittent. Formation control and trajectory tracking
control problems of general discrete-time multi-agent sys-
tems (DMAS) are studied in [10], where the formation
structure is fixed. In [11], formation control of DMAS
with nonlinear dynamics and uncertainties is investigated,
where the output feedback is applied and a p-copy internal
model is embedded. In [12], an iterative learning approach
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is applied to solve the formation control of DMAS with
nonlinear dynamics. In [10]-[12], the external constraints
such as transmission delays and switching topology are not
discussed. However, the above constraints often appear in
the practical applications.

The consensus of double-integrator DMAS with time-
delays and changing topology is studied in [13], where the
delays is assumed to be time-varying and the associated
graphs can have no spanning trees. In [14], consensus
of high-order DMAS with switching topology is investi-
gated, where the changing topology is supposed to Markov
switching. Consensus of general DMAS with time-delays
is addressed in [15], where the input, output, and commu-
nication delays are taken in consideration simultaneously.
The leader following consensus and leaderless consensus
with dynamically changing topology are studied in [16],
where the system matrix is assumed to be neutrally stable.
As far as we know, the time-varying formation problem
of double-integrator DMAS with changing topology and
transmission delays is still open.

Time-varying formation problem of double-integrator
DMAS with time-delays and switching topology is inves-
tigated in this article. First, the formation, which is time-
varying, is defined and corresponding formation vector is
given. Then a linear time-varying discrete-time formation
protocol based on the neighboring state is proposed. Using
the state transformation and properties of the stochastic
matrix, a theorem that ensures the realization of the time-
varying formation is given. Finally, a simulation is shown
to illustrate the effectiveness of the theoretical results.

In contrast to the previous works, the innovations of
this article are threefold. First, the models of multi-agent
systems and protocol are discretized. The discretized for-
mation controller can reduce the communication resource
consumption is more close to the practical applications.
However, the system models addressed in [6]-[9] are based
on continuous-time. Second, the formation vector can be
time-varying, which can provide more potential applica-
tion scenarios. Third, compared with the studies in [9],
[14]-[17], both the communication delays and switching
topology are taken into account. The time-delays can be
nonuniform; topology does not need to include a spanning
tree all the time.

The remainder of this paper is organized as follows.
Preliminaries of graph and matrix theory are presented
and the time-varying formation problem is defined in
section II. A linear time-varying discrete-time formation
protocol is given and a theorem that ensures the realiza-
tion of formation is proven in section III. In section IV,
a numerical simulation of four agents formation in a two-
dimensional surface is performed. Conclusions are drawn
in section V.

The following notations are applied in this paper for
simplicity. RM*N represents the set of real matrices with
M rows and N columns. 1 represents a vector [1,1,---,1]T
with an appropriate dimension. ® is the Kronecker prod-
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uct.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Basic properties of graph theory

Let G = (V, &, A) denote a weighted directed graph of N
nodes with the set of nodes V = {vy,va,...,vx}, the set
of edges € = {&;; = (vi,v;), € CV x V}, and a weighted
adjacency matrix A = (a;;) nxn. The weighted elements
a;; are nonnegative and it is assumed that a; = 0, Vi €
{1,2,...,N}. A graph G is called undirected if a;; = aj;,
Vi, j € {1,27...,N}. ./\/'J = {Uj eV, gji = (Uj,vi) S g}
represents the set of neighbor of node v;. If there exists a
series of edges (vs, v;,), (Viy, Vsy), ... (v4,,v;) with v;, (k=
1,2,...,1) different nodes of the graph, then it called that
there exists a directed path between nodes v; and v;. A
directed graph G is said to contain a directed spanning
tree if there exists at least one node that has directed
paths to all the other nodes. The in-degree matrix W is
defined as W = diag(degin (v1), degin(va), . .., degi (vN)),
where the in-degree of node v; is degi, (v;) = ij:l’#i aij.
The Laplacian matrix L of graph G is L =W — A.

Lemma 1. Let £ be the Laplacian matrix of directed
graph G, then 0 is an eigenvalue of L and 1 is the
associated right eigenvector, i.e. L1 = 0.

The topology considered in this paper is dynamically
changing. The topology of the graph G at time k is denoted
by G(k). Let Qn = {G(k),k € Z.} be the set of all the
possible topologies of graph G. Let L(k) = ({;;(k))nxn
denotes the Laplacian matrix of the graph corresponding
to the topology G(k). For all possible L(k), let dpa. be
the largest diagonal entry of L(k). The communication
delay among the agents is described by 7;; € Z4,i # j,
which represents the time-delay from agent j to i. As-
sume that the communication delays are bounded, namely
Tij < Tmaz, Where T4, is the maximal delay.

Definition 1 (Wolfowitz, 1963). Consider a square matrix
M= (m’Lj)an S Rnxn7
1) M is called a stochastic matrix if all the elements
of M are nonnegative and for Vi € {1,2,...,n},
23.1:1 m;; = 1.
2) If M is a stochastic matrix and there exists a con-
stant vector ¢ € R™ such that H+°§’ M7 = 1c", then

j=
M is called stochastic indecomposable and aperiodic

(SIA) matrix.
B. Definition of time-varying formation

Consider a DMAS with N agents; the dynamic equation
of agent ¢ is modeled as:

pi((k+1)T) = pi(kT) + Tv;(kT)
vi((k+ 1)T) = v;(kT) + Tu;(kT) (1)

where p;(kT) € R and v;(kT) € R are the position and
velocity of agent i at time kT, respectively. u;(kT) € R
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is the control input of agent 7 at time k7', T € R is the
sample period, and k € Z .

Denote z;(kT) = [p;(kT),v;(kT)]T € R? and replace
kT by k for simplicity. Then the system (1) can be
transformed to:

z;(k+ 1) = Az;(k) + Bu;(k) (2)
where k € Z,,1=1,2,...,N, and

A=l i) 2= [7

Definition 2. The system (2) realizes consensus if there
exists a fr(k) € R? such that
lim (x;(k)— fr(k))=0 Vi=1,2,...,N  (3)
k—+o0
where fr(k) is a vector-valued function and is defined as
the consensus reference function.

Denote z(k) = [z1(k)T,22(k)T, - ,zn(k)T]T, and
let h(k) = [hi(k)T ha(k)T,--- ,hn(k)T]T be the de-
sired formation vector for system (2), where h;(k) =
[hip(k), hiv(k)]T € R? is the formation vector for agent

7.

Definition 3. The system (2) realizes the time-varying
formation h(k) if there exists a hr(k) € R? such that

kEToo(xl(k) - hz(k’) - hR(kJ)) =0 Vi= 172, N ,N (4)

where hr(k) is a vector-valued function and is defined as
the formation reference function.

Remark 1. According to Definitions 2 and 3, one can
obtain that when h;(k) = 0, realizations of consensus and
time-varying formation h; (k) for system (2) are equivalent.
In such case, the consensus reference function fr(k) and
formation reference function hp(k) are the same. More
generally, the consensus problem can be considered as a
particular case of the time-varying formation problem to
be dealt with.

Assumption 1. The formation vector h;(k) =
[hip(k), hiv(k)]T € R? satisfies the following condition

hip(k +1) = hip(k) + Thiy(k), 1 =1,2,...,N (5)
III. TIME-VARYING FORMATION PROTOCOL

For system (2) with the nonuniform communication
delays and switching topology, in order to achieve the
formation defined by vector h(k), the following discrete-
time control protocol is proposed:

ui(k) =Ky (zi(k) = hi(k)) + hia(k))+

K2 aij(k)(wj(kr) — hj(kr) — 2i(k) + hi(k)) (6)
JEN (k)
with i € {1,2,..., N}, ky = k — 735, K1 = [k11, k2], Kz =
[ko1, koo] € R'2 two control parameter matrix, and
hia(k) = (hiv(k + 1) — hiy(k)) /T
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Under the protocol (6), the system (2) can be described
as following;:

zi(k+1) =(A+ BKy)zi(k) + B(hio(k) — K1hi(k))+

BK>Y aij(k)(x;(kr) — hj(k:) — zi(k) + hi(k))
JEN; (k)
(7)

Let e;(k) = (k) — hi(k) = [eip(k), giv(k)]T, then (7) is
transformed to:

+ BE2 Y ay(k)(e; (k) — (k)
JEN(K)
+ Ahi(k) 4+ Bhio(k) — hi(k +1)  (8)
According to Assumption 1, Ah;(k) + Bhi(k) —

hi(k + 1) = 0 can be obtained. Denote e(k) =
[e1(k),e2(k), -+ ,en(k)]T, then one can get that

Tmaw

e(k+1) =Z(k)e(k) + > (Tm(k) @ BKy)e(k —j) (9)
m=0

where Y;(k) € RM*N  Z(k) = Iy ® (A+ BK;) — Lg(k) ®
BK,, and Lgy(k) = diag(l11(k), laa(k), -, Inn(E)).

The ij entry of T, (k) is a;; if m = 7, is zero if
not. According to the definition of L(k), L(k) = Lq(k) —
Sormas Yo (k) can be obtained.

Let éi(k) = [€ip(k),€ip(k‘) + RKEiv(k‘)]T, where R =
1522/1521. Denote g(k) = [5_1 (k)T, 52(k)T, e ,5N(k)T]T, one
has that £(k) = (Ixy ® P)e(k), where

plad -l
1 Ry “Rx Rrx

Equation (9) can be converted to:

Tmawx

where Z(k) = (In® A— Ly(k)® B), A= P(A+BK;)P~!

T T
a- R e T}
kiiTRyg — (1 + leRK)E 1+ (1 + leRK)ﬁ

5 ~1_ 10 0
B = PBKsP —[0 g T

Let n(k) = [e(k)",e(k — )T, -+ J&(k — Trmae)T]Y, then
(10) can be further converted to:

n(k+1) = L'(k)n(k) (11)
with
Lo(k) T'i(k) Urpaa—1(k) Trpn (K)
Iy 0 0 0
I'(k) = 0 In 0 0
0 0 I;V 0
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s Tmaxs

where Fo(k) =
Li(k) = Ti(k) ®

Lemma 2. The system (2) realizes time-varying forma-
tion defined by formation vector h(k) if the system (11) is
asymptotically stable, namely limy_, - n(k) exists.

Proof. Since n(k) = [£(k)T,&(k—1)T, -+ &(k — Toax) T,
one has that limy_, y o &(k) exists if system (11) is asymp-
totically stable.

Furthermore, limy_, 1 » £(k) exists because one has that
e(k) = (Iy ® P~1)z(k) with P a nonsingular matrix.

Since e(k) xz(k) — h(k), the existence of
limg 4 oo (z(k) — h(k)) can be obtained, which means that
the system (2) realizes time-varying formation defined by
formation vector h(k).

E(k)+T0(k:)®B and for i =1,2,...

O

Two lemmas will be introduced to facilitate the proof of
the stability of system (11).

Lemma 3 (Wolfowitz, 1963). Consider a finite set of SIA
matrices ¥y, Uy, .-+, ¥, € R™*™ and for every series of

matrices W, , W, W, with ¢ > 1, the matrix product

Jiy Fg2s

W W, Wy is a SIA matrix. Then, for every infinite
sequence \Iljl,\lljz, -+, a vector ¢ € R™ can be founded
such that [],-7 ¥, = 1cT.

Lemma 4 (Lin, 2009). If I'(k) is a stochastic matrix, for
a period of time [ky, ka], ko > ki, k1,k2 € Z4, and the
union of the graphs U]Zikl G(k) has a spanning tree. Then

’Zikl (k) is a STA matrix.

Theorem 1. The system (2) can achieve the time-varying
formation h(k) if the following conditions are satisfied:
1) ];121>0 E}22>0 ]_€12<0 ]2'11:0
) T < Rk, 1+/€12RK <0
3) 1+ (1+ klzRK) > dmazkaoT
) There exists an mﬁnlte series of time ko
0,kq,ko,--- and for m u €24, 0 <kpmi1—km < p,
the union of graph Uk’"“L "G(k) has a spanning
tree.

Proof. From conditions 1) 2) and 3), one can get that all
the entries of A and B are nonnegative and row sum of A
and B are 1, so A and B are stochastic matrices.

Since L(k) = La(k)—>_7m T,,,(k) and L1 = 0, one can
get that I'(k)1 = 1. Furthermore, from the definition of
I'(k), it is clear that all the entries of I'(k) are nonnegative.
Thus, I'(k) is a stochastic matrix.

Denote my, € Z4 the largest integer such that k,,, <
k for every k > 0. Let ©(m) = T'(kmy1 — DI(kpmy1 —
2)-+-T'(ky,), then,

mp—1

mk]'[@

Since m,pu € Zy, 0 < kipy1 — ki <, the union of
graph Uk’”+1 " G(k) has a spanning tree, so ©O(m) is a SIA

n(k+1) =T(k)
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matrix according to Lemma 4. In addition, for an integer
J, the union of graph (J,”, Ry =1 G(i) has a spanning tree,
thus []7771 O(s) is a SIA ‘matrix.

All the possible topologies G(k) form a finite set Qp,
then all the a;;(k) belong to a finite set. Moreover, 0 <
km+1 — km < p, thus one can obtain that all the possible
O(j) form also a finite set. Hence, according to Lemma 3,
there exists a constant vector ¢ € R2(Tme=tDN gych that,

+o00
H o) =

Thus, it follows that,

mpg—1

mkH@

lim nk+1)=

k—+oco

lim (T'(k)-

k——+oo

+oo
[Tetmno
i=0

1c¢T7(0)

Then one can obtain that limy_, , o £(k) = 1¢Tn(0), and
it follows that limy_ 1o (z(k) — h(k)) = limg_ 1o (k)
(I ® P~1)1cTn(0). It means that the time-varying for-
mation is realized.

The proof is completed.

(12)

O

Remark 2. From the proof of Theorem 1, one can see
that the time-varying formation can be also achieved if
the communication delays among agents are uniform or
even reduced to zero. Furthermore, when the topology is
fixed, the formation can be realized if the topology has a
spanning tree.

Theorem 2. If the system (1) realized the time-varying
formation h(k), then the formation reference function
hr(k) satisfies that

: _ T
i ha(k) = )1 (0)

where 7(0) =1 ® [(Iy ® P)(z(0) — h(0))].

Proof. From the proof of Theorem 1, one obtains that
limg 1 0on(k + 1) = 1cTy(0). In addition, 7(0)
[E(0)T, e(=1)T, - &(~Tmax)T]T. Assume that (k < 0) =
£(0), then the following initial equation can be obtained,

(In® P! (13)

7(0) =1®&(0) =1 [(Iy @ P)(z(0) — h(0))]  (14)
According to Definition 3, one has that
kEToo hr(k) = kggloo(%(k) — hi(k)) (15)
From the proof of Theorem 1, one can obtain that,
kgglm(x(k) —h(k) = (Iy ® P11 n(0) (16)

Combining (14), (15), and (16
obtained.
The proof is completed.

), equation (13) can be

O
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Remark 3. According to Theorem 2, the formation refer-
ence function hgr(k) depends on the initial states of x(k)
and h(k). Furthermore, the accurate value of hr(k) can
be obtained if the constant vector ¢ is known.

IV. SIMULATION

Consider a DMAS with four agents that can move in
the X — Y plane. The position and velocity information
in the x and y directions are both taken into consid-
eration. The state of each agent is defined as z;(k) =

[Piz (k) vix (K), Diy (k), viy (k)] T, 0 € {1,2,3,4}.

(2)

©

© (d)

Fig. 1. Four topologies of system.

Sample time T of the simulation is set to 0.1 s. The
four topologies are shown in Fig. 1, one can see that the
union of graphs (a)J(b) J(c) J(d) has a spanning tree.
The topology is cyclically switched in the order of (a) —
(b) = (¢) — (d) and topology switching interval is set to
5T.

The communication time-delays among the four agents
are set to:

Tig = To1 = Tog = T32 = 1’
Tia = T41 = Tog = T4o = 20T
(17)

T13 = T31 = T34 = 43 = 3T’

[1!/(Ir1,)

Fig. 2. Position of four agents in X —Y — ¢ space within ¢ = 30 s.
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The desired formation for the four agents is a circular
formation with r = 5 m and w = 3.14 rad/s; the formation
vector is,

reos(wk + (i — 1)/2m)
—wrsin(wk + (i — 1)/2m)

rsin(wk + (i —1)/27)
wreos(wk + (i — 1)/27)

hi(k) = ,i€41,2,3,4}

According to Theorem 1, the control parameters are
chosen as K; = [0, —1], Ky = [0.2,0.4]. The initial states
of each agent are set as:

x1(0) = [1,0,—-1,0.2]"

22(0) = [~1.2,0.5,1,0.5]"

x3(0) = [~2,1,0.5,0.6]"

24(0) = [0.5,0, -1, -0.2]T
20 ——— Agent 1 4

—— Agent 2

=T —— Agent 3 1
10 Agent 4 N

vy(m/s)

Py I I I I I

Fig. 3. Velocity of four agents in X — Y plane within ¢ = 30 s.

The position evolution of the four agents in X —Y —¢
space within 30 s is presented in Fig.2. The velocity curves
of four agents over 30 s are shown in Fig.3 and the position
snapshot of four agents at 30 s is drawn in Fig.4.

It can be obtained from Fig.2 that after the start of the
simulation, a circular formation is formed among the four
agents. In addition, from Fig.3, the velocity of formation
can be obtained and it is about 15.5 m/s. Furthermore,
it can be obtained that the four agents form a circle with
r =5 m from Fig.4. Therefore, the angular velocity w is
about 3.14 rad/s; it means that the desired formation h(k)
is formed.

V. CONCLUSION

Time-varying formation problem of double-integrator
DMAS with time-delays and switching topology was
addressed in this paper. A linear discrete-time forma-
tion protocol based on neighboring states information
was proposed. By applying the state transformation and
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* Agent 1
* Agent 2
* Agent 3

Agent 4

py(m)

Fig. 4. Position of four agents in X — Y plane at t = 30 s.

properties of stochastic matrix, sufficient conditions for
DMAS with double-integrator dynamics to realize the
time-varying formation were given. Simulation results
have demonstrated that the proposed formation protocol
was effective for the double-integrator DMAS.
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