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Abstract—Time-varying formation tracking control problems
for multi-UAV systems are investigated in this paper, where
a leader with dynamic input is considered. A discrete-time
formation protocol based on sliding mode control method is pre-
sented. Using Lyapunov stability approach, sufficient conditions
for multi-UAV system to realize the desired formation tracking
are given and the quasi-sliding mode band is expressed. An
experiment with seven UAVs via Gazebo simulator is performed
to verify the effectiveness of the formation tracking protocol.

Index Terms—discrete-time, multi-UAV system, formation
tracking, dynamic leader

I. INTRODUCTION

During the past few years, formation control technologies of

multi-agent systems have been extensively investigated and ap-

plied in various domains, such as cooperative surveillance [1]

and source seeking [2]. With the development of technology,

the unmanned aerial vehicle (UAV), as a typical representative

of agent, can accomplish more and more missions [3], [4]. To

overcome the shortcomings of single UAV in mission, the UAV

swarm operations that multiple UAVs cooperate with each

other like an entire system become a new trend. For multi-

UAV system, how to realize the expected formation by an

efficient and robust control method is of theoretical challenges

and engineering importance.

Due to great advances in consensus control methods of

multi-agent system [5]–[8] over the past years, consensus

approach is extended to handle the formation control problem
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of multi-UAV system. In [9], the formation control problem of

a team of Vertical Take-Off and Landing UAVs is investigated,

where the communication delay is considered. In [10], an

output feedback linearization method is developed to handle

the time-varying formation control problem of multi-UAV

system. In [11], a consensus based approach is proposed

for the time-varying formation control problem of multi-UAV

system, where the procedure to design the protocol is given. In

[12], necessary and sufficient conditions are given for multi-

UAV system with topology changing to realize a time-varying

formation.

Note that in [9]–[12], only formation control problems

among multiple UAVs are taken into account. In practical

applications, just realizing the desired formation is not suf-

ficient, it will be also required to track a reference trajectory

given by a leader UAV. In this case, the formation tracking

control problems for multi-UAV system arise. In [13], a sliding

mode approach is presented to solve the formation tracking

control problem of multi-UAV system. In [14], an optimal

control approach is developed to deal with the formation

tracking control problem of multi-UAV system. In [15], time-

varying formation tracking problem of multi-UAV system with

switching directed topology is studied, where a protocol that

can be designed by four steps is provided to ensure the

realization of predefined formation tracking.

It should be pointed out that the above researches are on the

basis of continuous model and the proposed formation protocol

is also of continuous form. However, with the application of

the microcomputers in engineering fields, the discrete-time

protocol that can be implemented directly is preferred. Thus,

the research of discrete-time formation tracking control prob-

lem and the design of discretized protocol are more significant.

In [16], discrete-time formation tracking control problems that
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consider the system nonlinearity are investigated. The discrete-

time formation control problems for multi-UAV system are

studied in [17], where a discrete-time consensus based relative

localization approach is developed. However, one common

assumption on the above formation tracking control problems

for multi-UAV system is that the leader is without any control

input, or with known control input. But in actual applications,

the above assumption is difficult to be met, especially when the

leader is an enemy target to be tracked. As far as we know, the

study of the discrete-time formation tracking control problems

for multi-UAV system with a dynamic leader is still open.

The discrete-time time-varying formation tracking control

problems for discrete multi-UAV system with a dynamic leader

are researched in this paper. Sliding surface that is based on the

neighboring state information for each UAV of the multi-UAV

system is designed. Based on a discrete sliding mode control

method, a discrete formation tracking approach is given. The

stability of the proposed protocol is proved with the help of

Lyapunov stability theory. In addition, the quasi-sliding mode

band is obtained. To verify the application of the proposed

formation tracking method, a virtual experiment with seven

quadrotor UAVs in Gazebo simulator is conducted.

Compared with the previous researches on formation track-

ing control problems of multi-UAV system, the main con-

tributions of this paper are threefold. First, a leader with

maneuvering acceleration in the formation tracking control

problem of multi-UAV system is considered, where only the

bounds of the maneuvering acceleration need to be known.

While in [16], [17], it is assumed that the leader is without any

external acceleration or the external acceleration is known to

the followers. Second, the UAV model and formation protocol

are constructed as discretized form. While the researches in

[13]–[15] are based on continuous model, and the proposed

protocol cannot be implemented in digital systems directly.

Third, a virtual experiment formation tracking platform is

constructed and the validity of the proposed protocols are

demonstrated by virtual multi-UAV experiments. While in

[10], [14], [16], the effectiveness of protocols are verified

by traditional numerical simulations, such as MATLAB or

Simulink.

Notations: sgn represents the sympolic function;

sgn(A) = [sgn(A1), sgn(A2), . . . , sgn(An)]
T, if

A = [A1, A2, . . . , AN ] ∈ R
n. In addition, ||A|| denotes

the Euclidean norm for a real vector A. 1n denotes an

n-dimensional column vector with all elements being 1. ⊗
indicates the Kronecker product.

II. PRELIMINARIES

Considering a multi-UAV system with one leader labeled 0
and N followers labeled 1, 2, . . . , N . The interaction topology

among the N followers can be described by a weighted

directed graph G = (W , E ,A), where W = {w1, w2, . . . , wN}
denotes the set of nodes, E = {eij = (wj , wi), wi, wj ∈ W}
represents the set of edges, and A = [aij ]N×N is the weighted

adjacency matrix with i, j ∈ {1, 2, . . . , N}. In addition, eij
denotes the edge formed by nodes wj and wi, where wj and

wi are called the parent node and child node, respectively.

Moreover, aij > 0 represents the weight of edge eij if eij ∈ E ,

and aij = 0 if not. Besides, one assumes that aii = 0, ∀i =
1, 2, . . . , N . A directed path between nodes wi and wj is de-

fined by a series of edges (wi, wi1), (wi1, wi2), . . . , (wil, wj),
where wik (k = 1, 2, . . . , l) are different nodes of the graph.

For a directed graph G, if there exists at least one node

that has directed paths to all the other nodes, then it is

said to have a directed spanning tree. The in-degree of node

wi is defined as degin(wi) =
∑N

j=1,j 
=i aij . Then the in-

degree matrix D and the Laplacian matrix L are defined as

D = diag(degin(wi), i = 1, 2, . . . , N) and L = D − A,

respectively.
Assume that the communication between the leader and

followers is unidirectional, which means that the followers

can get the status of the leader, but otherwise it is not.

The interaction weight between the leader and follower i
is denoted by ai0. ai0 > 0 if the follower i can get the

status of the leader, and ai0 = 0 if not. In addition, denote

H = diag(a10, a20, . . . , aN0) and LH = L+H .

Lemma 1. If the directed graph G contains a directed span-
ning tree from the leader, then the matrix LH is invertible.

III. PROBLEM DESCRIPTION

A. Quadrotor UAV modeling

wX

wY

wZ

pFdx dy

dz

Figure 1: Quadrotor UAV body diagram.

According to Newton’s second law, the dynamic equation

of the UAV’s translational motion can be described as

m

⎡⎣Ẍw

Ÿ w

Z̈w

⎤⎦ =

⎡⎣ 0
0
mg

⎤⎦+Rb2w

⎡⎣ 0
0

−Fp

⎤⎦ , (1)

where g is the acceleration of gravity, m denotes the mass of

the UAV, and Fp ∈ R is the combined external force formed

by the four propellers. Xw, Y w, and Zw are the North, East,

and Down positions of UAV in the world frame, respectively.

Rb2w ∈ R
3×3 given in (2) is the transition matrix from the

body frame to the world frame, where φ, θ, and ψ are the roll,

pitch, and yaw angles, respectively.
Decomposing (1) in X and Y directions yields

mẌw = −Fp(sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ))

mŸ w = Fp(cos(ψ) sin(φ)− cos(φ) sin(ψ) sin(θ))
(3)
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Rb2w =

⎡⎣cos(θ) cos(ψ) cos(ψ) sin(φ) sin(θ)− cos(φ) sin(ψ) sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)
cos(θ) sin(ψ) cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ) cos(φ) sin(θ) sin(ψ)− cos(ψ) sin(φ)

− sin(θ) cos(θ) sin(φ) cos(φ) cos(θ)

⎤⎦ (2)

Linearizing (3) according to the following principles:

1) Pitch and roll are small attitude angles. It means that

sin(θ) ≈ 0, sin(φ) ≈ 0, cos(θ) ≈ 1, and sin(φ) ≈ 1.

2) Yaw angle does not change. It means that ψ = ψ0 =
ψdes, where ψ0 and ψdes are the initial and desired yaw

angles, respectively.

3) UAV is near the hovering steady state, which means that

Fp = mg.

As a result, one has

Ẍw =− g(φ sin(ψdes) + θ cos(ψdes)),

Ÿ w =− g(θ sin(ψdes)− φ cos(ψdes)).
(4)

Thus, the quadrotor UAV system can be transformed into

a linear double integrator model. Furthermore, assume that

the desired yaw angle ψdes = 0, then the position control in

horizontal direction can be decoupled into two separate double

integrator models

Ẍw =uX ,

Ÿ w =uY ,
(5)

where uX = −gθ, uY = gφ are new control variables for X

and Y directions, respectively.

B. Discrete-time multi-UAV system modeling

Each UAV of the multi-UAV system can be reduced as

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(6)

where i = 0, 1, 2 . . . , N , pi(t) ∈ R
n, vi(t) ∈ R

n, and ui(t) ∈
R

n are the position, velocity, and control input of UAV i at

time t, respectively.

Substituting the derivative by the forward difference, the

double integrator dynamics can be discretized as

pi((k + 1)T )− pi(kT ) = Tvi(kT ),

vi((k + 1)T )− vi(kT ) = Tui(kT ),
(7)

where k ∈ Z
+ and T > 0 is the sampling period.

For the sake of clarity and simplicity, let us assume that n =
1. However, it should be noted that all the theoretical analysis

in the following remains valid for higher dimensional cases,

namely, n ≥ 2. In addition, replace kT by k for simplicity of

description.

Denote xi(k) = [pi(k), vi(k)]
T ∈ R

2, the UAV i can be

transformed to the following state space representation

xi(k + 1) = Axi(k) +Bui(k), (8)

where

A =

[
1 T
0 1

]
, B =

[
0
T

]
,

and i = 0, 1, 2, . . . , N .

Denote X(k) = [x1(k)
T, x2(k)

T, . . . , xN (k)T]T and

U(k) = [u1(k)
T, u2(k)

T, . . . , uN (k)T]T, then multi-UAV

system with N followers can transformed to

X(k + 1) = (IN ⊗A)X(k) + (IN ⊗B)U(k). (9)

The leader in the multi-UAV system has the same dynamics

as the N followers. The control input u0(k) of the leader

is dynamic but unknown to the followers. Moreover, one

assumes that the dynamic input u0(k) is bounded, which

means that there exist two constants umin and umax such

that ∀k ≥ 0, umin ≤ u0(k) ≤ umax.

Assumption 1. For the multi-UAV system (8), there exists a
directed spanning tree from the leader UAV.

C. Problem formulation

Definition 1. The multi-UAV system (8) with one leader and
N followers is called to realize a formation tracking, if for
∀i = 1, 2, . . . , N , the following equation is satisfied:

lim
k→∞

(xi(k)− fi(k)− x0(k)) = 0, (10)

where fi(k) = [fip(k), fiv(k)]
T is the formation vector

defined for follower i with fip(k) and fiv(k) being the
corresponding position and velocity components, respectively.

For sliding mode control approach, the switching function

si(k) for follower i is defined as

si(k) = K
N∑
j=1

aij(xi(k)− fi(k)− xj(k) + fj(k))

+ ai0(xi(k)− fi(k)− x0(k)),

(11)

where K ∈ R
1×2 is a positive coefficient matrix.

Then the global switching function S(k) =
[s1(k)

T, s2(k)
T, . . . , sN (k)T]T can be expressed as

S(k) = (LH ⊗K)(X(k)− F (k))− (H ⊗K)(1N ⊗ x0(k)),
(12)

where F (k) = [f1(k)
T, f2(k)

T, . . . , fN (k)T]T.

The control objective of this paper is to design an appro-

priate discrete-time protocol such that the N follower UAVs

can pursue the trajectory x0(k) of the leader and form the

formation F (k) among themselves. The control objective of

sliding mode control is to make the sliding mode state of each

follower i become si(k) = 0 and force it to stay there all the

time.
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IV. FORMATION TRACKING PROTOCOL DESIGN

The discrete formation tracking protocol for multi-UAV

system (8) is proposed as

U(k) = −
(
LH ⊗ (KB̄)

)−1
(
(LH ⊗KĀ)X(k)

−H1 ⊗ (KĀx0(k))− (H ⊗KB̄)Ũ0(k)

+ (qT − 1)S(k) + εT sgn(S(k))

− (LH ⊗K)F (k + 1)
)
,

(13)

where Ũ0(k) = 1N ⊗ ũi0(k), ũi0(k) = ũ1 − ũ2 sgn(si(k)),
ũ1 = (umax + umin)/2, and ũ2 = (umax − umin)/2. ε and q
are two control parameters.

Theorem 1. Under protocol (13), the discrete-time multi-UAV
system (8) can realize the expected formation tracking if the
control parameters satisfy ε > 0, q > 0, and 1 − qT > 0.
Furthermore, the quasi-sliding mode band can be obtained

{si(k) : |si(k)| ≤ Δ}, (14)

where

Δ =
εT + ai0KB̄(umax − umin)

2− qT
. (15)

Proof. It holds from (12) that

S(k + 1) = (LH ⊗K)(X(k + 1)− F (k + 1))

− (H ⊗K)(1N ⊗ x0(k + 1)).
(16)

Replacing x0(k+1) and X(k+1) by the system equations

of leader and followers gives

S(k + 1) =(LH ⊗K)((IN ⊗ Ā)X(k) + (IN ⊗ B̄)U(k))

− (H ⊗K)
(
1N ⊗ (Āx0(k) + B̄u0(k))

)
− (LH ⊗K)F (k + 1).

(17)

Substituting protocol (13) into (17) yields

S(k + 1) = (1− qT )S(k)−H1 ⊗ (KB̄u0(k))

+ (H ⊗KB̄)Ũ0(k)− εT sgn(S(k)).
(18)

For each UAV i, one has from (18) that

si(k + 1) = (1− qT )si(k)− εT sgn(si(k))

− ai0KB̄(u0(k)− ũi0(k)).
(19)

Choose the Lyapunov candidate function as

Vs(k) =

N∑
i=1

(si(k)
2), (20)

which means that

ΔVs(k) = Vs(k + 1)− Vs(k)

=

N∑
i=1

(si(k + 1) + si(k))(si(k + 1)− si(k)).
(21)

The condition to stabilize the closed-loop system is

ΔVs(k) < 0 when si(k) 
= 0. The equivalent stability

conditions are

(si(k + 1)− si(k)) sgn(si(k)) < 0, (22)

(si(k + 1) + si(k)) sgn(si(k)) > 0. (23)

Then let us discuss the two cases si(k) > 0 and si(k) < 0.

Case 1: si(k) > 0. From (19), one gets

si(k + 1)− si(k) =− ai0KB(u0(k)− umin)

− εT − qTsi(k),
(24)

si(k + 1) + si(k) =− ai0KB(u0(k)− umin)

+ (2− qT )si(k)− εT.
(25)

For (24), si(k + 1) − si(k) < 0 is satisfied. For (25), if

si(k + 1) + si(k) > 0, it results in

si(k) >
εT + ai0KB(u0(k)− umin)

2− qT
. (26)

Case 2: si(k) < 0. From (19), one has

si(k + 1)− si(k) =− ai0KB(u0(k)− umax)

+ εT − qTsi(k),
(27)

si(k + 1) + si(k) =− ai0KB(u0(k)− umax)

+ (2− qT )si(k) + εT.
(28)

For (27), the condition si(k + 1) − si(k) > 0 is fulfilled.

For (28), if si(k + 1) + si(k) < 0, it yields

si(k) <
−εT + ai0KB(u0(k)− umax)

2− qT
(29)

The definitions of umin, umax, and Δ give

εT + ai0KB(u0(k)− umin)

2− qT
≤ Δ, (30)

and
εT + ai0KB(u0(k)− umax)

2− qT
≥ −Δ. (31)

From the above analysis of the two cases, one can see that

when si(k) ≥ Δ or si(k) ≤ −Δ, the conditions (22) and (23)

are satisfied simultaneously, which means that si(k) converges

to zero. When −Δ < si(k) < Δ, only (22) is fulfilled. It

means that the phenomenon of increasing amplitude chatter

around the switching plane will be occurred, but according to

conditions (22) and (23), it will be limited by ±Δ. It can be

concluded that the system is bounded stable, namely,

lim
k→∞

|si(k)| ≤ Δ. (32)

Meanwhile, the quasi-sliding mode band (14) can be ob-

tained. The proof is completed.

Remark 1. From (14), it can be concluded that the width of
quasi-sliding mode band 2Δ decreases with the decreasing of
the sampling period T . Moreover, one can see that when the
leader’s control input u0(k) is exactly known, namely, umax =
umin = u0(k), the quasi-sliding mode band Δ will degrade
to Δ′ = εT/(2− qT ).
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V. EXPERIMENTAL RESULTS

A. Simulation platform

In order to make the simulation as close as possible to

the reality, ROS and Gazebo are used to establish the mul-

tiple UAVs formation tracking simulation platform. As an

open source simulator with physic engine, Gazebo supplies a

robot simulation environment, where both the gravity, friction,

and contact forces are considered. By integrating with ROS,

Gazebo simulator has been widely applied in the field of

robotics research.

Figure 2: Structure of the formation tracking platform.

Fig. 2 indicates the organization of the multiple UAVs

formation tracking platform. Gazebo sends states information

such as position, velocity, and attitude of each UAV through

ROS topic. The sliding mode formation tracking controller

node subscribes to the states, calculates the control inputs of

the four channels of pitch, roll, yaw, and altitude of each UAV,

and publishes them to the corresponding ROS topic. Gazebo

simulates the movement of UAVs according to their control

inputs, and displays the trajectory of UAVs in real time.

B. Simulation results

A multi-UAV system with one leader and six follow-

ers are taken into account. In order to clarify the move-

ment of the UAVs in the X-Y plane, the positions and

velocities in the two directions are all considered. In this

case, n = 2, the state vector xi(k), formation vec-

tor fi(k), and control input ui(k) of UAV i can be

rewritten as xi(k) = [piX(k), viX(k), piY (k), viY (k)]
T,

fi(k) = [fipX(k), fivX(k), fipY (k), fivY (k)]
T, and ui(k) =

[uiX(k), uiY (k)]
T, respectively. The 0-1 interaction topology

between the UAVs is shown in Fig. 3. One can verify that there

exists a directed spanning tree from the leader. Then one has

that H = diag(1, 0, 0, 0, 0, 0), and

L =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
−1 1 0 0 0 0
0 −1 1 0 0 0
−1 0 0 1 0 0
0 0 0 −1 1 0
−1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Figure 3: Interaction topology among the UAVs.

The leader makes a circular motion around the origin of

coordinates, where wl = 0.157 rad/s and rl = 20 m. Then,

one can choose umin = −1 and umax = 1. The time-varying

formation for the followers is a circular motion with radius

rf = 10 m, angular velocity ωf = 0.314 rad/s, and the phase

difference π/3. The formation vector is

fi(k) =

⎡⎢⎢⎢⎣
rf cos(ωfk + (i−1)π

3 )

−ωfrf sin(ωfk + (i−1)π
3 )

rf sin(ωfk + (i−1)π
3 )

ωfrf cos(ωfk + (i−1)π
3 )

⎤⎥⎥⎥⎦ , i = 1, 2, . . . , 6.

According to Theorem 1, the parameters of control inputs

in (13) for followers are chosen as ε = 0.05, q = 10, and

K = [3, 1].
The trajectories of seven UAVs in X-Y plane within 40s

are shown in Fig. 4, where the positions of UAVs at t = 0s

and t = 40s are represented by round and hexagon markers,

respectively. The positions of seven UAVs in horizontal plane

at t = 40s are indicated in Fig. 5.

According to the red circle in Fig. 5, the six followers reach

on the circle with a radius 10 m at t = 40 s, and the leader is

at the center of the circle. One can see that the desired circular

formation motion among the followers is achieved. Therefore,

it can be concluded that the desired time-varying formation

tracking fi(k) of the multi-UAV system is realized.

VI. CONCLUSIONS

Discrete-time formation tracking problem for multi-UAV

system was investigated, where the leader was subject to time-

varying control input. Using sliding mode control method, a

discrete-time formation tracking controller was constructed.

Sufficient conditions for multi-UAV system to complete the
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Figure 4: Trajectories of seven UAVs within 40 s. Figure 5: Positions of seven UAVs at 40 s.

time-varying formation tracking control were given, where the

quasi sliding mode band was derived. The results of formation

tracking experiment with seven quadrotor UAVs in Gazebo

verified the effectiveness of the designed protocol.
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