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Abstract—Time-varying formation tracking control problems
for multi-agent systems with second-order nonlinear dynamics
are investigated in this paper, where a leader with unknown
dynamic control input is considered. By utilizing sliding mode
control approach, a distributed formation tracking controller
on the basis of the neighboring state information is designed.
Based on Lyapunov stability theory, sufficient conditions for the
realization of predefined formation tracking are summarized. A
numerical simulation with six agents is performed to demonstrate
the effectiveness of the proposed formation tracking protocol.

Index Terms—formation tracking, multi-agent system, second-
order nonlinear dynamics, dynamic leader

I. INTRODUCTION

Over the past few years, formation control problems of

multi-agent systems have been extensively studied. With the

collaboration between several agents, the multi-agent sys-

tem has the ability to perform more complicated missions

in more complex environments than individual agents. Un-

manned Aerial Vehicles (UAVs) and Unmanned Ground Vehi-

cles (UGVs), and Autonomous Underwater Vehicles (AUVs)

are three typical agents. As an important branch of cooperative

control technologies, formation control technologies can be

applied to various domains, such as target enclosing [1] and

source seeking [2].

Formation control problems of first-order [3], second-order

[4], [5], and high-order [6]–[8] multi-agent system have been
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investigated. While in the above studies, just the formation

control problems are taken into account. In practical ap-

plications, the multiple agents need not only to realize a

predefined formation, but also to track a trajectory generated

by a virtual or real leader. In this case, the formation tracking

problems arise. In [9], the multi-agent system with double

integrator dynamics formation tracking problem is studied,

where the sufficient conditions for the stabilization of closed-

loop system with designed formation tracking controller are

given. A sliding mode control strategy is developed in [10]

to guarantee that the multi-agent system with double inte-

grator can complete the expected formation tracking in finite

time. Sufficient conditions for multi-agent system with double

integrator under directed interaction topology to realize the

formation tracking are given in [11].

However, the researches in [9]–[11] are based on linear

models of multi-agent system, such as with double integra-

tors or multiple integrators dynamics. While in real physical

system, the non-linearity is universal. So it is more significant

to focus on and deal with the formation tracking problems

of multi-agent system with nonlinear dynamics. Formation

tracking problems for second-order nonlinear multi-agent sys-

tem are investigated in [12], where neural network is utilized

in the proposed formation protocol design. A distributed

observer-based control strategy is employed in [13] to handle

the formation problems of nonlinear multi-agent system with

double integrators dynamics, where the time delays among the

agents are taken into account. Formation tracking problems

of nonlinear multi-agent system are studied in [14], where

an adaptive iterative learning approach is proposed. A state

observer based protocol is designed in [15] to ensure the

realization of multi-agent system formation tracking with

general nonlinear dynamics.
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It should be noted that in the above studies of formation

tracking problems, it is assumed that the leader agent is

without any control input, or with known control input. But in

actual applications, the multi-agent system need to track not

only the cooperative target, but also the noncooperative target.

The above assumption is not valid when the leader agent is

noncooperative one. As far as we know, the research of the

time-varying formation tracking control problems of nonlin-

ear second-order multi-agent system with unknown dynamic

leader is still open.

Time-varying formation tracking control problems for

second-order nonlinear multi-agent system with a dynamic

leader are studied in this paper. Based on the neighboring

state information, a formation tracking controller using the

sliding mode control approach is given. The convergence

of the closed-loop system with the designed controller is

demonstrated with the help of Lyapunov stability theory. To

verify the validity of the proposed formation tracking method,

a numerical simulation with six agents is conducted.

Compared with the previous researches on formation track-

ing control problems of multi-agent system, the main con-

tributions of this paper are threefold. First, the formation

tracking vectors are time-varying. Compared with the static

formation problems studied in [10], [12], [13], time-varying

formation tracking technologies have the potential for broader

application. Second, the nonlinear dynamics of multi-agent

system is considered. The design and analyses of formation

tracking protocol are more complicated, and the theoretical

results are more practical. while only linear models are

considered in [9]–[11]. Third, a leader with maneuvering

acceleration is considered in the formation tracking control

problems of multi-agent system, where only the bounds of

maneuvering acceleration need to be known. While in [12]–

[14], it is assumed that the leader is without any control input

or with known control input, which is difficult to be satisfied

in practical engineering.

Notations: sgn represents the symbolic function;

sgn(A) = [sgn(A1), sgn(A2), . . . , sgn(An)]
T, if

A = [A1, A2, . . . , An] ∈ R
n. In addition, for a vector

or matrix A, |A| and ‖A‖ denote the 1-norm and 2-norm,

respectively. 1N denotes a N -dimensional column vector

with all elements being 1. The Kronecker product is indicated

by ⊗.

II. PRELIMINARIES AND SYSTEM MODELING

A. Graph theory

Consider a multi-agent system with one leader labeled 0
and N followers labeled 1, 2, . . . , N . The interaction com-

munication topology among the N followers can be de-

scribed by a weighted directed graph G = (W, E ,A),
where W = {w1, w2, . . . , wN} denotes the set of nodes,

E = {eij = (wj , wi), wi, wj ∈ W} represents the set of

edges, and A = [aij ]N×N is the weighted adjacency matrix

with i, j ∈ {1, 2, . . . , N}. In addition, eij denotes the edge

formed by nodes wj and wi, where wj and wi are called the

parent node and child node, respectively. Moreover, aij > 0

represents the weight of edge eij if eij ∈ E , and aij = 0 if

not. Besides, one assumes that aii = 0, ∀i = 1, 2, . . . , N .

A directed path between nodes wi and wj is defined by

a series of edges (wi, wi1), (wi1, wi2), . . . , (wil, wj), where

wik (k = 1, 2, . . . , l) are different nodes of the graph. A graph

G is said to have a directed spanning tree if there exists one

node which has directed paths to the other nodes. The in-

degree of node wi is defined as degin(wi) =
∑N

j=1,j 
=i aij .

Then the in-degree matrix D and the Laplacian matrix L
are defined as D = diag(degin(wi), i = 1, 2, . . . , N) and

L = D −A, respectively.

Assume that the communication between the leader and

followers is unidirectional, which means that the followers

can get the status of the leader, but otherwise it is not.

The interaction weight between the leader and follower i
is denoted by ai0. ai0 > 0 if the follower i can get the

status of the leader, and ai0 = 0 if not. In addition, denote

H = diag(a10, a20, . . . , aN0) and denote LH = L+H .

Lemma 1. If the graph G contains a directed spanning tree
from the leader, then the matrix LH is invertible.

Lemma 2. Consider a nonlinear system ẏ = g(y), g(0) = 0,
and a positive definite function V (y) ∈ R. If there exist two
constants c and γ such that

V̇ (y) + cV γ(y) ≤ 0, (1)

with c > 0 and 0 < γ < 1. Then V (y) can reach zero in a
finite period, where the finite setting time T depending on the
initial state is

T ≤ V (1−γ)(y(0))

c(1− γ)
. (2)

Lemma 3. For a continuous positive function V (t) ∈ R,
namely, V (t) ≥ 0 with ∀t > 0, if there exist two positive
constants σ and β such that

V̇ (t) ≤ −βV (t) + σ, (3)

then V (t) is upper bounded and satisfies

V (t) ≤ V (0)e−βt +
σ

β
(1− e−βt). (4)

B. System description

The nonlinear dynamics of the leader (i = 0) and followers

(i = 1, 2, . . . , N ) can be described as

ẋi(t) = vi(t),

v̇i(t) = f(xi(t), vi(t), t) + ui(t),
(5)

where xi(t) ∈ R
m, vi(t) ∈ R

m, and ui(t) ∈ R
m are the

position, velocity, and control input for agent i at time t,
respectively. The term f(xi(t), vi(t), t) is the corresponding

intrinsic nonlinear dynamics.

Assumption 1. For the leader’s dynamic input u0(t), there
exists a constant û0 > 0 such that ∀t ≥ 0, |u0(t)| ≤ û0.
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Assumption 2. There exist two positive constants ρ1 and ρ2
such that for ∀i = 1, 2, . . . , N , one has

‖f(xi(t), vi(t), t)− f(x0(t), v0(t), t)‖
≤ ρ1‖xi(t)− x0(t)‖+ ρ2‖vi(t)− v0(t)‖.

(6)

Assumption 3. The directed graph G contains at least a
spanning tree from the leader agent.

III. PROBLEM STATEMENT AND TRANSFORMATION

Definition 1. For system (5), the desired formation tracking
{hxi(t),hvi(t)} for each agent i (i = 1, 2, . . . , N ) is realized,
if the following two conditions are met simultaneously

lim
t→∞(xi(t)− hxi(t)− x0(t)) = 0,

lim
t→∞(vi(t)− hvi(t)− v0(t)) = 0,

(7)

where hxi(t) ∈ R
m and hvi(t) ∈ R

m are the correspond-
ing time-varying position and velocity formation components,
respectively. In addition, the equation ḣxi(t) = hvi(t) is
required for the desired formation vectors.

For follower i (i = 1, 2, . . . , N ), the position and velocity

formation tracking errors are defined as

exi(t) =
N∑

j=1,j 
=i

aij(xi(t)− hxi(t)− xj(t) + hxj(t))

+ ai0(xi(t)− hxi(t)− x0(t)),

evi(t) =
N∑

j=1,j 
=i

aij(vi(t)− hvi(t)− vj(t) + hvj(t))

+ ai0(vi(t)− hvi(t)− v0(t)).

(8)

Let x(t) = [x1(t)
T , . . . , xN (t)T ]T , v(t) =

[v1(t)
T , . . . , vN (t)T ]T , hx(t) = [hx1(t)

T , . . . ,hxN (t)T ]T ,

hv(t) = [hv1(t)
T , . . . ,hvN (t)T ]T , u(t) =

[u1(t)
T , . . . , uN (t)T ]T , εx(t) = [ex1(t)

T , . . . , exN (t)T ]T ,

εv(t) = [ev1(t)
T , . . . , evN (t)T ]T , F =

[f(x1, v1, t)
T , . . . , f(xN , vN , t)T ]T , and f0 = f(x0, v0, t).

Then, denote

x̃(t) = x(t)− hx(t)− 1N ⊗ x0(t),

ṽ(t) = v(t)− hv(t)− 1N ⊗ v0(t).
(9)

Using the notations of εx(t), εv(t), x̃(t), and ṽ(t), (8) can

be written as

εx(t) = LH ⊗ Im · x̃(t),
εv(t) = LH ⊗ Im · ṽ(t). (10)

Taking the derivative of (10), one gets the following forma-

tion tracking error system

ε̇x(t) = εv(t),

ε̇v(t) = LH ⊗ Im · (F + u(t)− ḣv(t)

− 1N ⊗ (f0 + u0(t))).

(11)

Lemma 4. For multi-agent system (5), the desired time-
varying formation tracking will be realized if the error system
(11) converge to zero.

Proof. When the error system (11) converges to zero, it yields

εx → 0 and εv → 0 as t → ∞. According to Lemma 1, one

has

lim
t→∞ x̃(t) = 0,

lim
t→∞ ṽ(t) = 0.

(12)

From the expression of x̃(t) and ṽ(t), one has

lim
t→∞x(t)− hx(t)− 1N ⊗ x0(t) = 0,

lim
t→∞ v(t)− hv(t)− 1N ⊗ v0(t) = 0.

(13)

According to Definition 1, it can be concluded that the

desired formation tracking {hx(t),hv(t)} is realized. The

proof is completed.

The control objective of this paper is to design an appropri-

ate protocol to ensure that the desired formation tracking can

be achieved.

IV. FORMATION TRACKING PROTOCOL DESIGN AND

ANALYSES

The distributed formation tracking controller for agent i (i =
1, 2, . . . , N ) is designed as

ui(t) = uai(t) + ubi(t) + uci(t), (14)

where

uai(t) =ḣvi(t), (15)

ubi(t) =(ai0 +

N∑
j=1,j 
=i

aij)
−1

[ N∑
j=1,j 
=i

aijubj(t)− μevi(t)
]
,

(16)

uci(t) =(ai0 +
N∑

j=1,j 
=i

aij)
−1

[ N∑
j=1,j 
=i

aijucj(t)

− (g + c0 + c1) sgn(evi(t) + μexi(t))
]
, (17)

with μ, g, c0, and c1 four control parameters.

Theorem 1. The multi-agent system (5) can realize the desired
time-varying formation tracking under the protocol (14) if the
parameters g and c0 satisfy

1) g = ω(ρ1‖εx‖+ ρ2‖εv‖), with ω = ‖LH‖‖L−1
H ‖,

2) c0 = ‖h⊗ û0‖, with h = [a10, a20, . . . , aN0]
T ,

3) μ and c1 are two arbitrary positive constants.

Proof. Define the sliding mode fucntion S as

S(t) = εv(t) + μεx(t). (18)

Then reorganize the protocol (14) as a more compact form

u(t) = ua(t) + ub(t) + uc(t), (19)

where

ua(t) = ḣv(t), (20)

ub(t) = −μL−1
H ⊗ Im · εv(t), (21)

uc(t) = −L−1
H ⊗ Im · {sgn(S(t)) · (g + c0 + c1)}. (22)
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The Lyapunov candidate function for S(t) is chosen as

Vs(t) =
1

2
S(t)TS(t). (23)

Taking the derivative of (18), one has

Ṡ(t) = μ ˙εx(t) + ˙εv(t)

= μεv(t) + LH ⊗ Im · (F + u(t)− ḣv(t)

− 1N ⊗ (f0 + u0(t))).

(24)

Then the derivative of Vs(t) is

V̇s(t) = S(t)T Ṡ(t)

= S(t)T {μεv(t) + LH ⊗ Im · (F + u(t)

− ḣv(t)− 1N ⊗ (f0 + u0(t)))}.
(25)

Substituting (19) into (25) yields

V̇s(t) = S(t)T {LH ⊗ Im · (F + uc(t)

− 1N ⊗ (f0 + u0(t)))}.
(26)

Using the facts on the Kroneckor product, one has

‖LH ⊗ Im‖ =
√

λmax(LH ⊗ Im)T (LH ⊗ Im)

=
√

λmax(LT
HLH)⊗ Im

=
√

λmax(LT
HLH)

= ‖LH‖.

(27)

For the nonlinear function, the following inequality can be

obtained

‖F − 1N ⊗ f0‖ = ‖[(f(x1, v1, t)− f(x0, v0, t))
T ,

. . . , (f(xN , vN , t)− f(x0, v0, t))
T ]T ‖

≤ ‖[‖f(x1, v1, t)− f(x0, v0, t)‖,
. . . , ‖f(xN , vN , t)− f(x0, v0, t)‖]T ‖

≤ ‖[ρ1‖x1 − x0‖+ ρ2‖v1 − v0‖,
. . . , ρ1‖xN − x0‖+ ρ2‖vN − v0‖]T ‖

≤ ρ1‖[‖x1 − x0‖, . . . , ‖xN − x0‖]T ‖
+ ρ2‖[‖v1 − v0‖, . . . , ‖vN − v0‖]T ‖

≤ ρ1‖x̃‖+ ρ2‖ṽ‖.
(28)

Thus, from (27) and (28), one has

‖LH ⊗ Im · (F − 1N ⊗ f0)‖
≤ ‖LH ⊗ Im‖ · ‖F − 1N ⊗ f0‖
≤ ‖LH‖ · (ρ1‖x̃‖+ ρ2‖ṽ‖)
≤ ‖LH‖‖L−1

H ‖ · (ρ1‖εx‖+ ρ2‖εv‖)
≤ ω(ρ1‖εx‖+ ρ2‖εv‖).

(29)

Then it yields the following inequality for V̇s(t)

V̇s(t) = ST {LH ⊗ Im · (F + uc − 1N ⊗ (f0 + u0))}
≤ ‖S‖ · ‖LH ⊗ Im · (F − 1N ⊗ f0)‖

+ ST {LH ⊗ Im · (uc − 1N ⊗ u0)}
≤ ω‖S‖(ρ1‖εx‖+ ρ2‖εv‖)

+ ST {h⊗ (−u0)− sgn(S) · (g + c0 + c1)}
≤ ω‖S‖(ρ1‖εx‖+ ρ2‖εv‖) + ‖S‖ · ‖h⊗ û0‖

− |S| · (g + c0 + c1)

≤ ω‖S‖(ρ1‖εx‖+ ρ2‖εv‖) + ‖S‖ · ‖h⊗ û0‖
− ‖S‖ · (g + c0 + c1)

≤ ω‖S‖(ρ1‖εx‖+ ρ2‖εv‖)− g‖S‖+ ‖S‖ · ‖h⊗ û0‖
− c1‖S‖ − c0‖S‖

≤ −c1‖S‖

≤ −
√
2

2
c1V

1
2
s (t).

(30)

Since c1 > 0, according to Lemma 2, one can see that the

error system (11) can reach the switching plane S(t) = 0, and

maintain on it.

On the switching plane S(t) = 0, the definition of S(t)
yields

μεx(t) + εv(t) = 0, (31)

and then

μεx(t) = −εv(t) = −ε̇x(t). (32)

The Lyapunov function for error system (11) is chosen as

Vεx(t) =
1

2
εx(t)

T εx(t), (33)

Then, one can obtain

V̇εx(t) = εx(t)
T ε̇x(t) = −μεx(t)

T εx(t) = −2μVεx(t). (34)

From Lemma 3, one can get εx(t) → 0 as t → 0. In

addition, since on the switching plane S(t) = 0, one has

εv(t) = −μεx(t). Thus, it yields εv(t) → 0 as t → 0. Then,

by Lemma 4, it can be obtained that under the protocol (19),

the desired time-varying formation tracking is realized as the

time tends to infinity. The proof is completed.

V. NUMERICAL SIMULATION

A. simulation settings

A multi-agent system with one leader and five followers

is taken into account. In order to clarify the movement of the

agents in the X-Y plane, the positions and velocities in the two

directions are all considered. In this case, m = 2, the position

xi(t), velocity vi(t), position formation component hxi(t),
velocity formation component hvi(t), and control input ui(t)
of agent i can be written as xi(t) = [xiX(t), xiY (t)]

T , vi(t) =
[viX(t), viY (t)]

T , hxi(t) = [hxiX(t),hxiY (t)]
T , hvi(t) =

[hviX(t),hviY (t)]
T , ui(t) = [uiX(t), uiY (t)]

T , respectively.

The nonlinear function is f(xi, vi, t) = −xi cos(t)−vi sin(t)−
cos(vi), then one has ρ1 = 2 and ρ2 = 2.
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Figure 1: Interaction topology among the six agents.

The 0-1 topology among the six agents is displayed in

Fig. 1. One can verify that there exists a directed spanning

tree from the leader. Then one has H = diag(1, 0, 0, 0, 0),
and

L =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
−1 0 0 1 0
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦ .

The leader makes a circular motion around the origin of the

coordinates, where wl = 0.314 rad/s and rl = 20 m. Then, one

can choose û0 = 2. The predefined formation shape for the fol-

lowers is a circular motion with radius rf = 10 m and angular

velocity ωf = 0.628 rad/s. The corresponding position forma-

tion hxi(t) and velocity formation hvi(t) vectors for follower

i (i = 1, 2, . . . , N ) are hxi(t) =

[
rf cos(ωfk + 2(i−1)π

5 )

rf sin(ωfk + 2(i−1)π
5 )

]
and

hvi(t) =

[
−ωfrf sin(ωfk + 2(i−1)π

5 )

ωfrf cos(ωfk + 2(i−1)π
5 )

]
, respectively. One can

see that the condition ḣxi(t) = hvi(t) is satisfied.

From Theorem 1, the control parameters μ = 0.3 and c1 =
0.5 are chosen for protocol (14).

B. simulation results

Fig. 2 shows the trajectories of agents in horizontal plane

within 40 s, where the locations of agents at t = 0 s and t = 40
s are represented by round and hexagon markers, respectively.

The detailed positions of six agents in horizontal plane at

t = 40 s are indicated in Fig. 3. The switching function

s1(t) of follower 1 is represented in Fig. 4. The position and

velocity formation tracking errors of follower 1 in X direction

are indicated in Fig. 5. Taking the follower 1 as an example,

the switching functions and formation tracking errors of the

other followers are similar to those of the follower 1.

According to the red circle in Fig. 3, the five followers reach

on the circle with a radius 10 m at t = 40 s, and the leader is at

the center of the circle. One can get that the predefined circular

formation motion among the followers is achieved. In addition,

from Fig. 4 and Fig. 5, it can be obtained that the switching

function and formation tracking error function decrease rapidly

at the beginning and eventually converge to a bounded region.

Therefore, it can be concluded that the expected formation

tracking is realized.

VI. CONCLUSIONS

Formation tracking control problems for nonlinear second-

order multi-agent system were investigated, where the leader

was subject to unknown dynamically changing acceleration.

By utilizing the neighboring state information, a distributed

formation tracking controller based on sliding mode control

method was constructed. Sufficient conditions for multi-agent

system to complete the desired time-varying formation track-

ing were given. The numerical simulation with six agents

verified the usefulness of the designed formation tracking

approach.
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