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Abstract: Bipartite antagonistic time-varying formation tracking problems for multi-agent systems with one
dynamic leader is investigated in this paper, where the followers track the leader while achieving a predifined time-
varying formation, and one group of followers tracks the leader while another group of followers tracks the leader
at the opposite position to the origin. The competitive interactions among the followers and the external input of
the leader are both taken into consideration. A distributed bipartite antagonistic time-varying formation tracking
protocol is constructed by using the neighboring state information. Sufficient conditions for multi-agent system to
achieve the bipartite formation tracking are given. An approach to extend the feasible set of formation is proposed
and an algorithm to design the protocol is introduced. A numerical simulation is provided to demonstrate the

effectiveness of the protocol.
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1 Introduction

During the past few decades, cooperative control
problems of multi-agent systems have been extensively
studied and applied in various fields, for example, coop-
erative localization [1], target enclosing [2], and collab-
oration of sensor network [3]. Formation control, which
requires that the agents of the system achieve a prede-
fined formation, is one of the most attractive categories
of the cooperative control due to its application poten-
tial in the field of unmanned aerial vehicle (UAV) [4]
and spacecraft group control [5] .

Time-invariant formation problems for second-order
multi-agent systems with undirected graph are pre-
sented and sufficient conditions to realize a formation
are given in [6]. Distributed time-varying formation
tracking protocol for linear second-order multi-agent
systems is proposed in [7]. A formation control ap-
proach for linear second-order multi-agent systems with
time-varying delays are addressed in [8]. Formation
control of multi-agent systems with stochastic switch-
ing topology and time-varying communication delays is
presented in [9]. A time-varying formation control for
unmanned aerial vehicles system with switching inter-
action topologies is addressed in [10].

However, most of the aformentioned research focus
on directed graph or an undirected graph. Antagonis-
tic interaction can be apppear in the formation con-
trol problem. In [11], necessary and sufficient condi-
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tions for the first-order multi-agent systems to realize
a bipartite consensus are given. Bipartite flock con-
trol problem for multi-agent system is studied and an
algorithm to guarantee the bipartite behavior is given
in [12]. A bipartite containment tracking problem for
multi-agent systems with signed graph is investigated in
[13]. Adaptive bipartite tracking problem for double in-
tegrator multi-agent system is studied and convergence
error is analyzed in [14]. Distributed bipartite tracking
consensus problem for linear multi-agent systems with
dynamic leader is investigated in [15]. In [16], bipartite
consensus problem for multi-agent system with input
saturation is studied.

Based on formation control and bipartite antagonis-
tic topology, bipartite antagonistic time-varying forma-
tion tracking problem for multi-agent systems with one
leader is investigated in this paper. First, antagonistic
interaction among followers and external control input
for leader are taken into account. Then, a distributed
bipartite antagonistic time-varying formation tracking
protocol is proposed, where both the desired formation
vector and the tracking trajectories can vary over time.
Secondly, sufficient conditions for multi-agent systems
to realize bipartite antagonistic time-varying formation
tracking are proposed. In addition, the feasible set of
formations can be extended by introducing a auxiliary
constant matrix. Stability of the close-loop system is
discussed by using Lyapunov stability theory. Finally,
a numerical simulation is given to illustrate the effec-
tivenss of the protocol.

Compared with the previous works, the new contri-
butions of this paper are threefold. First, the track-
ing trajectory and the formation vector can be time-
varying. Second, cooperative and antagonistic interac-
tions among the followers are taken into account and
the graph describing the antagnostic topology is more
complex. Third, in contrast to bipartite formation ap-
proaches in most of the paper, dynamic leader is consid-
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ered in this paper. In practical applications, the tracked
target usually has external acceleration.

This paper is organized as follows. Preliminaries of
graph theory and the problem transformation are pre-
sented in Section 2. Bipartite antagonistic time-varying
formation tracking problem analysis, protocol design
and proof of stability are given in Section 3. An al-
gorithm to design the protocol is introduced in Section
4. A numerical simulation example is shown for illus-
tration in Section 5. Finally, in Section 6, conclusions
are given .

Throughout this paper, for simplicity of notation,
® represents the Kronecker product and RM*¥ rep-
resents the set of real matrices with M rows and N
columns. Notation diag(oy,09,...,0n) denotes a di-
agnal matrix with o; as its i-th diagnal element. 1y
denotes a column vector of size N with constant 1 as
its element. Symbol sgn(A) represents the sympolic
function, sgn(A) = [sgn(A1),sgn(As),...,sgn(Ax)]|T if
A = [A}, Ay, ..., AN]T € RY is a real vector. Nota-
tion ||A|| and ||A[|; are used to represent the Euclidean
norm and 1-norm of a real vector A, respectively.

2 Preliminaries and problem description

2.1 Basic properties of graph and bigraph the-
ory

A signed directed graph with NV nodes is denoted by
G=W,E A), where V = {v1,va,...,0n} is the set of
nodes, & = {&; = (vi,v;), € C V x V} is the set of
edges and A = (a;;)nxn is a signed weighted adja-
cency matrix. The signed weight a;; could be positive
or negative, a;; = &; if &; € £, a;; = 0 if not. In
addition, assume that a;; =0, i =1,2,..., N. The set
of neighbor node v; is defined as N; = {v; € V, &;; =
(vi,vj) € €}. The graph G is called undirected if for
Vi,j€{1,2,...,N}, there has a;; = a;;. There exists
a directed path between v; and v; if there exists a se-
ries of edges (vs, vi, ), (v, Viy), - .. (v4;,v;) with v;, (k=
1,2,...,1) different nodes of the graph G. An undi-
rected graph G is said connected if there exists a path
for any pair of nodes (v;,v;), where i,j € {1,2,...,N}.
A directed graph G has a directed spanning tree if there
is at least one node which has directed paths to all the
other nodes. The in-degree of a node v; for a signed
graph is defined as degi,(v;) = Z?f:l’j# la;j|. One
observes that for a unsigned graph (a;; is nonnega-
tive), the definition of in-degree degrades to degi,(v;) =
Z;Vﬂ j#i @ij- The in-degree matrix W is defined by
W = diag(degin(v1),degin(ve),...,degin(vn)). The
Laplacian matrix L of the graph G is defined by L =
W — A.

Definition 1. A signed graph G is called structurally
balanced if there exists a bipartition of the nodes, V;
and Vo and they satisfy the following conditions:

. V1UV2:VandV10V2=(Z)

o ;; > 0 if Vi, V5 € Vp (p S {1,2})

° Qjj <0if v; € Vp, (S V3_p (p S {1,2})

From the above definition, one can draw the following
lemma to determine the structurally balance property

of the graph.

Lemma 1. Define a set of diagonal matrix D = {IT =
diag(o1,09,...,0n),0; = *£1}, a signed graph G is
structurally balanced if and only if 311 € D, such
that ITAII has all nonnegative entries. In addition,
IT gives a partition of the nodes: V;, = {i,o; > 0},
Vo = {i,O’i < O}.

2.2 Definition of bipartite formation tracking

Consider a agent group with one leader and N follow-
ers whose states are represented by xo(t) and z;(t),i €
{1,..., N}, respectively. The dynamic equation of each
agent is modeled as follows:

7i(t) = Awi(t) + Bu,(t) (1)

where z;(t) € R™ represents the state of n-order agent
i, u;(t) € R® represents the control input of the agent i.
Matrices A € R™"*", B € R™** are constant matrices.

Assume that the control input of the leader ug(t) is
bounded. There exists a constant ., > 0 such that
Vit > 0, ||uo(t)|] < wmaz-

The interaction topology among the N followers is
described by a signed directed graph G, the Lapla-
cian matrix L € RM*N and the adjacency matrix
A = [a;;] € RVN with 4,5 € {1,2,..., N} of graph G
are defined as before. Further, the interaction topology
among the N + 1 agents (one leader and N followers) is
described by a signed directed graph G, the Laplacian
matrix and adjacency matrix are L € RIN+D*(N+1) 459
A = [a;;] € RVEDXNHD where 4,5 € {0,1,..., N},
respectively.

Assume that the interaction between the leader and
follower is positive or zero, i.e. a9 > 0. Furthermore,
one assumes that the graph G has a directed spanning
tree with the leader being the root and the graph G is
connected and structually balanced.

Definition 2. The multi-agent system (1) is said to
a realize bipartite tracking consensus if the following
conditions are satisfied:

limg oo [[24(t) — 20()]] = 0,4 € V)
limy a0 ||£Cl(t) + {E(](t)H =0,Vi € V3*p7 p e {]., 2}
(2)

For a signed structurally balanced graph G, according
to Lemma 1 and Definition 2, one can give an equivalent
definition for bipartite tracking consensus.

Definition 3. The multi-agent system (1) with a struc-
turally balanced graph G is said to realize a antagonistic
bipartite tracking consensus if the following conditions
are satisfied:
lim ||x;(t) — oyzo(t)|| =0,7€ {1,2...,N} (3)
t—o0
Let h(t) = [hi(t)T, ha(t)T, -+  hn(®)T]T be the de-
sired bipartite time-varying tracking formation vector
for the multi-agent system (1), where h;(t) € R™ is the
formation vector for agent 1.

Definition 4. The multi-agent system (1) is said to
realize a bipartite antagonistic time-varying formation
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tracking h(t) if the states x;(t) of the N followers satisfy where I7 is as defined in Lemma 1 and Lz is defined as

the following conditions: L==L+E.
, Denote n(t) = [m(t)",m2(t)",...,qn(t)"]", with
{meoo”w) —ao(t) = ha(1)]| =0, Vi € V) ni(t) = @it) — hi(t) — oo (t), i € {1,2,...,N}. Then
limy o0 [J2i(8) + 20(t) = hi(t)|] = 0,Vi € Vs—p, p € {1,2} one has x(t) = h(t) + n(t) + Hlyao(t) and @(t) =

(4) h(t) + n(t) + M1yio(t). One notices that @o(t) =
Similar to the above conversion of the bipartite track- Azo(t) + Buo(t), so Eq.(8) can be changed to:

ing consensus definiton, an equivalent definition for the i(t) = T1(t) + Ta(t) + Ts(t) + Tu(t) + Ts(2)
bipartite antagonistic time-varying formation tracking Iy (t) = (In @ (A + BK;) + ¢1Lz ® BKy)n(t)
can be obtained. +ea(Iy @ B)sgn((Lz @ Ko)n(t))
Definition 5. The multi-agent system (1) with a struc- —(I1y ® B)uo(t) )
turally balanced graph G is said to realize a bipartite an- Ia(t) = (In ® (A+ BK1))h(t) — h(t)
tagonistic time-varying formation tracking if the states I3(t) = ((Un ® (A+ BEK1))1y)zo(t) — (II1n ® A)zo(?)
x;(t) of the N followers meet the following conditions: —(II © BK11y)xo(t)

F4(t) = ((ClL” ® BKQ)HIN)zo(t)

t1_1>120||$Z(t)—0'1$0(t)—hl(t)”:0,26{1,2,N} (5) ( H®BclK21N) t)
5(t) = ((IN®B)sgn((L~®K2)H1N)xo(t)

Remark 1. According to Defintion 3 and Definition —(EII ® Kaly)xo(t))
5, one can obtain that when h;(t) = 0, the multi-agent (9)
system realizes a bipartite antagonistic formation track- Since IT = diag(oy1,09,...,0n), 0; € {£1}, E =
ing which can also be regarded as achieving a bipartite diag(aio, a0, --.,ano) and o;0;a;; > 0 for i,j €
tracking consensus. In this case, the bipartite antago- {1,2,...,N}, one can get that a;jo; = |a;j|o; and
nistic formation tracking problem and bipartite tracking a;jo; = |a;j|o;, then:

consensus problem are equivalent. More generally, the
bipartite tracking consensus problem can be treated as a

special case of bipartite antagonistic formation tracking (L: ® Kp) [T ywo(t) — EIT ® Kalyo(t)

roblem. N
. . . . ) Z ( Z Ks(laij| + aio)oixo(t)
3 Time-varying formation tracking protocol o1 \ joiki
For the N followers, in order to realize the bipartite N N
antagonistic formation tracking defined by formation - Z Ksa;05x0(t) — Z K2ai00ix0(t))
vector h(t), one considers the following control protocol: 7_1# g=1#i
Uz(t) = K1 (l'z(t) - Uil'o(t)) + clS(t) + CQSgH(S(t)) = ( Z K2 |am|m amoj)> Io(t)
S(t) = Ko [aio(xi(t) — (1)) — iao(t) =1 \j=12i
+ 300 (il (:(6) = ha() =0 (10
—aij(z;(t) — hj(t )))] So one can obtain that I's(¢) = 0 in Eq.(9). Similarly,
(6) one can prove that I's(t) = 0 and T'4(¢) = 0. Then
where i € {1,2,...,N}, ¢1 > 0,¢2 > 0 and K;, K5 € Eq.(9) can be simplified as:
R**™ are two control parameter matrix.
Inserting protocol (6) into the equation of system n(t) = T1(t) +Taft)
Eq.(1), the following equation can be obtained: I'(t) = (In® (A+ BK1) + ¢1 Lz ® BK2)n(t)
+e2(In @ B)sgn((Lz ® K2)n(1))
+Bc15(t) 4+ Beasgn(S(t)) [y(t) = (Iy ® (A+ BK)))h(t) —
S(t) = Ky [aio(xi(t) —hi(t) —aiwo(t)  (q) (11)
+ Zjvzl (|a¢j|(:ci(t) — hy(1)) Theorem 1. Under protocol (6), the multi-agent sys-
—ag;(x;(t) — hy (t)))} tem (1) can achieve a bipartite antagonistic time-
varying formation tracking h(t), if the two following
Furthermore, let = = diag(a1o, azo, - - ., ano), z(t) = conditions are simultaneously satisfied:
(21T, 22(t)7, ..., xn(t)T]T, one has, (7) For the constant matrix K,
O — (e o (A + BE)a(t) hult) = (A + BEh(1) =0 (12)
+ (e1L= ® BES)(2(t) — h(t)) (#4) One has that ¢; > 1/Amin(L), c2 > Umas and
matrix Ky = —B7(Q, where the symmetric positive def-

— (I @ BK 1y + EIL® BerKaly)wo(t) inite matrix @) is obtained by solving the following Lin-
+ ¢2 (In ® B) sgn((Lz ® Ky)(x(t) — h(t)) ear Matrix Inequality (LMI),

— I @ Klyo(t)) (8) Q(A+ BK)) + (A+ BK)TQ —2QBBTQ <0 (13)
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Proof. If the condition (4) is holds, one gets that T's(

t
(In®(A+BK)))h(t)—h(t) = 0in Eq.(11), then Eq.(
can be rewritten as:
0(t) = (Iy ® (A+ BKy) + c1Lz ® BKo)n(t)
+ co(In @ B)sgn((Lz @ Ka)n(t))
— ({I1y ® B)uo(t) (14)
Denote 7j(t) = (II®In)n(t). Since II~! = II, one has

n(t) = (II @ In)(t) and 7(t) = (II @ In)7(t). Eq.(14)
can be transformed as:

) =
11)

i(t) = (I ® In) " e2(In ® B)sgn((Lz ® K2)(II ® In)il(t))

+ (I @ Iy) Iy ® (A+ BK;)
+ c1Lz ® BK2)(II @ In)ij(t)
— (T ®Iy) ' (IT1y @ B)uo(t) (15)
Since 1Y = II, (Il @ Iy)™' = (II ® Iy), and
ITsgn(z) = sgn(llz), where z is an arbitrary dimension
matching matrix, one has,
n(t)=(In ® (A+ BKy) + a1 1L=11 ® BK>)ij(t)
+ co(In ® B)sgu((IIL=11 ® K»)f(t))
— (Iy ® B)uo(t) (16)
II=I1 = E because of diag(a1007, a2003,...,ano0%) =
diag(alo,ago,...,a]vo). HLEH = IILIl + [I=Z]] =
IILII +=. Denote L = ITL=II = IILII + Z, one can
get that
N(t) = (In @ (A+ BK1) + 1L ® BK»)ij(t)
+ ca(In @ B)sgn((L @ K2)n(t))
— (1n ® B)uo(t) (17)
Let -
P(t) = (L@ In)n(t) (18)
It can be thus derived from (17) that

¥(t) = (In ® (A+ BK1) + ¢1. L ® BK,)(t)
+ c2(L @ B)sgn(O(t))
— (L1y @ B)ug(t) (19)

where O(t) = [61()T,0,(1)7,...,On1)T]" = (In ®
Ko)(t) with ©;(t) e R® for i € {1,2,...,N}.

Lyapunov function V() = ¢(t)T (In ® Q) (t) is se-
lected for system (19), where @ > 0 is a symmetric
matrix.

V(t) =207 (t)(In ® Q)¥(t)
207 (t)(In ® Q(A + BK1) + 2¢1 L @ QBKy)i(t)
—2¢,07 (t)(L ® I,)sgn(O(t))
+ 207 (t)(L1n @ I,)up(t) (20)

V (t) can be rewritten as following:

Vit)=Vi+ W+
Vi =T (1) (In © (Q(A+ BK)) + (A + BK,)TQ)
—c1L @ 2QBBT Q) (t)
Vo = —2¢,0(t)" (L @ I)sgn(O(t))
Vs =20(t)T (L1n ® Is)up(t)
(21)

Since L = ITL=IT = ITLIT + =, one has that,

o) (L ® I,)sgn(O(t))
= O(t)"(IILIT ® I,)sgn(O(t)) + O(t)" (Z ® I,)sgn(O(t))

ai05ai; (||0:(1)|l — Oi(t) sgn(6;(t))
i=1 j=1,j#i

> > aillOi()] (22)

where [|0;(t)||1 — O;(t)"sgn(0,(t) > 0 for i,j €
{1,2,...,N} because of 07 = 1, |a;;| = o0i0a;; and

O;(t)"sgn(0;(t)) = [|Oi(1)]]1.

e
=0

HT(L1y @ Is)uo(t)
T LIy ® I)ug(t) + Ot (Ely @ I, )uo(t)

—_—

(aio@i(t))uo(t) for 0‘2»2:17

I
] =

0i0;aij = |ai|

<.
Il
_

@i0Umagz]|©: ()1 (23)

-

<
I
—

One can obtain that
Va+ Vs
=207 (t)(L1y @ I)uo(t) — 2c.0T (t)(L @ I,)sgn(O(t))
N
<Y aio(tmar — ¢2)[|0:(1)]1
<0 (24)
Eq.(21) can be rewritten as follows:

V() <" (t)(In ® (Q(A+ BEy) + (A+ BK1)"Q)
— 1L ®2QBBT Q) (t) (25)
If the condition (47) holds, one has that Ky = —BQ.
In addition ¢; > 1/Amin(L), one has Iy < ¢1 L, then

V() <o ()(In @ ((Q(A+ BK)) + (A+ BE)'Q)
—20BB7Q))u(t)
<0 (26)

According to Lyapunov stability criterion, V(t) > 0

V(t) <0, so ||p(t)]| converges to 0. Since ¥(t) = (L ®
In)(IT @ In)n(t), it follows immediately that:

Jim [[za(8) — ha(t) — io(t)]| = Jim [lns(1)]| = 0. (27)

O
4 Algorithm of protocol design

The protocol (6) can be designed by the following
steps:
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Step 1: For all i € {1,2,..., N}, check the follow-
ing formation feasibility condition. For the formation
vector h(t), if there is a constant matrix K; satisfy-
ing the expression (28), continue; Otherwise the multi-
agent system cannot form the desired formation h(t)
under protocol (6), stop.

hi(t) — (A+ BK;)hi(t) =0 (28)

Step 2: Solve the following LMI (29) to obtain sym-
metric positive definite matrix @ and K5 can be calcu-
lated by Ky = —BT(Q. Choose the appropriate ¢; and

¢ such that ¢; > 1/Apin(L) and ¢2 > Umas-
Q(A+ BK;) + (A+ BK;)"'Q - 2QBBTQ <0 (29)

Remark 2. Condition (28) shows that K; can be used
to extend the feasible set of formations. If K1 =0, the
feasible set of formation becomes h;(t) — Ah;(t) = 0,
which means that only a limited set of feasible forma-
tions can be determined based on the characteristics of
the system matrix A.

5 Simulation

Consider a multi-agent system with one leader and
five followers which move in the X—Y plane. Dynamics
equation of each agent is as following:

Zi(t) = Az (t) + Buy(t), (30)

where 7; =€ R*, i €{0,1,...,5},

pui(t) 0100 0 0
o lem®] 5 oo 0 0] 4 [1 o0
BO=1 6 Ao 0o 0 1| B0 o
vyi(t) 0000 0 1

pzi(t) € R and py;(t) € R are the position of agent in
the x and y directions, respevtively, and v,;(t) € R and
vy (t) € R are the velocities of agent in the z and y
directions, respevtively.

Fig. 1: Antagonistic topology of the multi-agent system.

The leader makes a circular motion around the point
(3,3) with wr, = 0.2 rad/s and r, = 2 m. wup(t) =
[~w2srp*cos(wrt), —w?*rpxsin(wrt)]T, one can obtain
that ||ug(t)|] < Umae = 0.08. The desired formation

tracking form for the followers is two identical circles

with w = 1 rad/s and r = 0.5 m, the formation tracking
vector h(t) is as following,

rcos'(wt + (4 - 1)/m) ]|
i [t ) ey
wreos(wt + (i — 1)/m) |
rcos(wt +2(j —1)/3m) |
S e R
wrcos(wt +2(j —1)/37) |

The antagonistic interaction topology is shown in
Fig.1. One can verify that the bigraph corresponding to
the topology of followers is structually balanced. Fol-
lowers can be separated into two parts: V; = {1,2} and
Vo = {3,4,5}, then one has IT = diag(1,1,—-1,—1,—1).
The Laplacian matrix L is

25 —1 15 0 0
-1 2 0 0 1
L=1]15 0 35 =2 0
0 0 -2 35 -15
0 1 0 —-15 25
. . —w?2 0 0 0
Matrix K7 is calulated as K1 = { 0 0 —u? ol
~_|-1 0 0 O . Y
then K; = {0 0 —1 0]. Matrix Ko = —B*Q

is calucated by solving the equivalent LMI: Q’l(fl +
BK)T + (A+ BK;)Q™ ! —2BBT < 0. By using the
Matlab YALMIP solver, one gets that

1252 —0.304 0 0
O | 70304 1735 0 0
=1 o 0 1252  —0.304
0 0  —0304 1.735
—0.146  —0.602 0 0
and Ky = |, 0 0146 —0.602|" mad

dition, one selects that ¢; = 10 and ¢, = 1. The initial
states of each agent are set as:

1 2 -2
T0(0) = Of) , #1(0) = _12 , 72(0) = (1613
—0.6 0.8 -1

-3 -3 0

w30 = |1 a0 = [ a0 = |
0.1 0.9 0.7

Fig.2 and Fig.3 display the positions p,;(t) and py;(t)
of the agents in the X—Y plane within ¢ = 80s and
the snapshot of those positions at ¢ = 80s, respectively,
where the initial positions are marked by the diamond
markers and the positions at t = 80s are marked by the
asteriskF markers.
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It can be obtained from Fig.2 and Fig.3 that the
followers 1 and 2 track the leader while form a circle
around the leader with radius r = 0.5m and angular
velocity w = 1rad/s, and followers 3, 4, and 5 track
the leader at the symmetrical position relative to the
origin and form a circle with same radius and angular
velocity. Therefore, one can get that the desired bi-
partite antagonistic time-varying formation tracking is
achieved under the protocol (6).

Fig. 2: Positions p.i(t) and py(t) in X—Y plane within
t = 80s.

0.5

Position P,/m
°

L L L L L L
-3 2 -1 0 1 2 3
0 P,/

Fig. 3: Positions p,;(t) and py,(t) in X—Y plane at ¢ = 80s.

6 Conclusion

Bipartite antagonistic time-varying formation track-
ing problem were investigated in this paper. Sufficient
conditions for multi-agent system to realize bipartite an-
tagonistic formation tracking was given. A distributed
bipartite antagonistic formation tracking protocol was
proposed by using the neighboring states information
and an algorithm to design the protocol was proposed.
Furthermore, an approach to extend the feasible set of
formation was introduced. Simulation results demon-
strated that the theorical results were effective for the
bipartite formation tracking problem. Based on the
above analysis, it is significant to study the bipartite
antagonistic time-varying formation tracking problem
with switching topology in future research.
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