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Abstract—This paper addresses the problem of optimizing
imaging quality in radio-astronomy through antenna sub-arrays
exploitation. A strategy for switching antenna sub-arrays is
proposed to improve imaging quality and reduce computational
complexity thanks to the drastic reduction of simultaneously
used visibilities. The imaging algorithm is formulated based
on the expectation-maximization (EM) algorithm, leveraging the
correlation between antenna sub-arrays. Numerical simulations
are conducted using sub-arrays designed by the Cramér-Rao
bound (CRB) and the Barankin Bound (BRB) criteria to validate
the proposed strategy. The imaging quality is evaluated using the
normalized mean square error (NMSE) and structural similarity
(SSIM) metrics, both globally and locally. Results demonstrate
that the proposed antenna sub-array switching strategy effec-
tively enhances imaging quality while reducing computational
complexity.

Index Terms—Antenna array processing, radio inteferometry,
radio-astronomy imaging, EM algorithm.

I. INTRODUCTION

Radio-astronomy telescope technology has made significant
progress in the last decades, with the number of antennas
increasing from tens to thousands and even millions. For
instance, the SKA (Square Kilometer Array) project [1-3] in-
volves over a hundred thousand antennas. However, processing
data from all these antennas presents a formidable challenge
due to limitations in data transmission, the big need for high
precision analog-to-digital converters, and high computational
complexity. Therefore, efficient techniques for exploiting an-
tenna arrays are crucial to overcome these challenges.

By carefully selecting a subset of antennas, it is possible
to significantly reduce the computational load without exces-
sively sacrificing imaging quality. Antenna selection has been
widely studied in the literature, with conventional techniques
primarily focusing on optimizing the U-V coverage of the
antenna array [4]. However, these methods are not necessar-
ily optimal in terms of statistical performance. As a result,
various antennas selection techniques based on estimation
lower bounds have been proposed, including the Cramér-Rao
bound (CRB) [5-7] and the Barankin bound (BRB) [8]. These
techniques leverage the statistical performance of the radio-
astronomical imaging estimators. Among them, the CRB-
based antennas selection method offers advantages in terms of
a closed-form expression and asymptotic performance, while
the BRB-based method provides greater accuracy for finite
sample sizes, considering the effect of ambiguity in small-
sized samples or low signal-to-noise ratio (SNR) [9, 10].

Considering the advantages of both methods, we propose
a strategy that combines these two approaches instead of

choosing one over the other depending on the application
scenario. The proposed strategy involves switching sub-arrays
over time, capitalizing on the correlation between antenna sub-
arrays. This strategy aims to enhance imaging quality even
further compared to using CRB or BRB criteria alone, while
simultaneously reducing computational complexity compared
to using the full antenna array.

The switching strategy involves dynamically selecting dif-
ferent sub-arrays over time, alternating between the CRB-
based and the BRB-based sub-arrays. The imaging algorithm
is formulated based on the expectation-maximization (EM)
algorithm, which is a well-known iterative algorithm for
maximum likelihood (ML) estimation [11]. The proposed
strategy and imaging algorithm are validated using numerical
simulations. The imaging quality is evaluated using the nor-
malized mean square error (NMSE) and structural similarity
(SSIM) metrics, both globally and locally. Results demon-
strate that the proposed antenna sub-array switching strategy
effectively enhances imaging quality. Moreover, the reduction
in computational complexity is significant, as the number
of visibilities and antennas used in the switching strategy
is smaller than that of the union of the CRB-based and
the BRB-based sub-arrays. This reduction in computational
complexity has practical implications for real-world radio-
astronomy imaging systems, allowing for more efficient data
processing and reduced resource requirements.

The rest of paper is organized as follows. Section II presents
the radio-interferometric data model. The antenna sub-array
switching strategy is described and the corresponding EM-
based imaging algorithm is formulated in Section III. Nu-
merical setup and result analysis are presented in Section IV.
Finally, Section V concludes the paper.

The following notations are used in this paper: the conjugate
transpose, determinant, trace, and expectation operators are
given by (-)%, ||, Tr(-), and E[], respectively. The weighted
ly-norm is defined as ||z||3 = z” Az where z and A are
respectively a vector and a matrix with appropriate dimensions.

II. RADIO INTERFEROMETRIC DATA MODEL

The radio interferometer involves measuring the spatial
coherence of the electric field between pairs of antennas in
the antenna array. These measurements, known as visibilities,
provide information about the electromagnetic radiation emit-
ted by celestial sources under observation. The main idea of
this paper is to dynamically switch the antenna sub-arrays
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during the observation process. This can be mathematically
formulated as

k:Mkrkakzla'”aK (1)

where M, represents the switching matrix of size py x N
(N the total number of visibilities), which is constructed by
selecting p;, < N rows from the identity matrix Iy. The vector
r; denotes the complete visibility vector, while y;, represents
the observed visibilities in the k-th snapshot block with K
denoting the total number of snapshot blocks.

For each visibility vector ry, as described in [12, 13], the
imaging problem in radio-astronomy can be formulated as a
linear model

r, = Hx + ny 2

where H € CV*"™ is the forward operator, which corresponds
to the Fourier transform based on the Van-Cittert Zernike
theorem [14], symbol x € R™ represents the image vector
of size m (number of pixels) to be restored, and ny, € CN is
the noise vector corresponding to the k-th snapshot block.

The noise n; can be modeled as a combination of Radio
Frequency Interference (RFI) and thermal noise. RFI refers
to unwanted signals or electromagnetic emissions that origi-
nate from various man-made sources, such as communication
systems, satellites, power lines, or other electronic devices
[15, 16]. The RFI noise can be modeled as a low rank matrix
and can be removed at the stage of antenna calibration [17].
On the other hand, thermal noise is inherent to any electronic
system and arises due to the random motion of electrons and
thermal energy. The thermal noise is modeled as a complex
Gaussian distribution with zero mean and covariance matrix
0?1, where o2 is the thermal noise variance. For our analysis,
we will first consider a general noise covariance matrix 3 for
the noise vector ny to account for both thermal noise and RFI.
Then, we assume that the RFI noise can be removed during
the antenna calibration process, and therefore, we will also
give the result of the thermal noise case.

Our objective is to estimate the image vector x and the noise
variance X from the noisy visibilities y; with k=1,--- | K.
Furthermore, we assume that the source image x exhibits
sparsity in the context of radio astronomy. To enforce sparsity,
we incorporate an ¢;-norm regularization term [18] on the
image vector x

R(x) = allx[i = a) |zl 3)
=1

where x; is the ¢-th element of x, and « is a positive tuning
parameter. A higher value of a promotes a sparser image
vector x, resulting in more elements of x being zero.

We will initially attempt to solve the problem using the
ML estimator. The log-likelihood function of the observed

visibilities is defined as
K

=3 log plyxlx, ) - allx|:
k=1

L(yla e 7YK|X7 E)

log CN (yi|MHx, M ZM/) — a|x||1 )
k=1

Mx

- (108 ML =M | + Jlexl g, mnar) 1)
k=1
— o]l
where the symbol o< means that the irrelevant constant terms
are omitted,
er = yr — MHx 4)

and CN (yx|M;Hx, M, M) represents the probability
density function of the complex Gaussian distribution with
mean M;Hx and covariance matrix MM}, EMkH .
The ML estimator is obtained by maximizing the log-
likelihood function
%3 = argmax L(yq,- -

X,

Computing X and by presents a challenging problem, primarily
due to the time-varying nature of the switching matrix. As a
result, obtaining an analytical closed-form solution becomes
infeasible. To tackle this challenge, we propose the utilization
of the EM algorithm to solve for ML estimators.

III. EM-BASED IMAGING ALGORITHM

The EM algorithm is an iterative algorithm that alternates
between the expectation (E) step and the maximization (M)
step to find the maximum of the log-likelihood [11]. In our
case, we consider ry with k = 1,--- | K as the complete data
space and y; = Mjry represents the observable part of r.
In addition, to denote the missing part of ry, we introduce
a switching matrix complementary to My, which is denoted
by M, € RIN=P&)*N and obtained by removing the rows of
M, from the identity matrix Iy. Thus, the missing part of ry,
can be denoted by Mry.

More specifically, in this paper, we use an extension of EM
algorithm, which is the Expectation-conditional maximization
either (ECME) algorithm [19]. The “either” refers to the
fact that the update of X is conducted by maximizing the
conditional expectation of the complete-data log-likelihood
function, and the update of x is performed by maximizing
directly the actual (incomplete data) log-likelihood function.

The log-likelihood function of the complete data is

K
= 3 logplrulx, =) — alx;
k=1

Lc(rh e 7rK|X5 2)

K
log CN (ri|Hx, X) — a||x||;
; )

o — Z 10g|2|+Tr(Z '(ry — Hx)(r), — Hx) ))
k=1
—afx|s
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For the E-step, we need to compute the expectation of com-
plete log-likelihood function with respect to the conditional
distribution of the complete data given the observed data and
the current estimate of the parameters. Indeed, the only term
that needs to be computed is

cl™ = Ee,ypxom som [(tr = Hx)(rp, — Hx)]  (8)

where E,, |y, xom) s0m) [] denotes the expectation operator
with respect to the conditional distribution of rj; given the
observed data yj, and the estimate of parameters at the last
iteration (x("), 33(m)),

To simplify the notation, we temporarily omit the iteration
number (m). Using the conditional distribution of the com-
plete data given the observed data and the current estimate of
the parameters, we have (see appendix for the calculations)

C, = 8,2 + M| G, M,
Er = Mje; + MkHNk ®
where pi and Gy are given by
p, = MM (M EM) ey,
Gy = M,IM, — M, M/ (M, =MF) "' M, M,
(10)

Thus, the surrogate function for E-step is given by

Q(Bx™, 5y  — EK: (log S|+ Tr (2,101(:”)))
k=1
(11)

Then for the M-step, we need to maximize the surrogate
function Q(X|x(™), (™)) with respect to X and the solution
is given by
1 K )

(m
%2 Ci

k=1

s+l — (12)

To solve for x, we maximize directly the log-likelihood
function of the observed data yj given the current estimate
of X which is given by

K
% = argmin Y (Jlexllfag, moongn 1 ) +allxly (3)
* k=1
Specifically, we use the Iterative Soft-Thresholding Algorithm
(ISTA) [20] to solve the above optimization problem and the
solution is

x(m+1) — I‘)‘ro‘)l( < (m) + — Z(MkH MkEMkH)legcm)>
af[X||1
14

(m) yr — M;Hx("™) and the proximal operator is

where e,
defined as

prox (u); = sgn(w;) (Ju;| — @), (15)

allx||1
with

(luil = @) = max(0, Jui| — @) (16)

Algorithm 1: ECME-based antenna switching imager
Data: X, x(©
Imput: H, o, and y,, k=1,... . K
QOutput: Estimates of X and 3!
Initialisation: £(™) < 50, x(m) « x(©
1 while stop criterion not met do
2 E-step: for kK =1,..., K, compute pj, and Gy
using (10), and Cém) using (9)
3 | M-step: update (" +1) and x(™*1 ysing (12) and
(14), respectively
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Fig. 1: Antenna configurations of the CRB-based array and
the BRB-based array.

The ECME algorithm is summarized in Algorithm 1.

Remark: For the special case of considering only the
thermal noise, i.e., ¥ = o02Iy, we do not need to employ
the EM algorithm, since it is possible to directly maximize
the log-likelihood function in (4). In this case, the estimate of

o2 is given by

. (m
52 Zk or £ Z H )H a7

and consequently, the update of x is given by

(m+1) _ (m) H (m)
x = prox < +7K Z M, H) ) (18)

allx|[1 h—1
IV. NUMERICAL EVALUATION
A. Simulation Setup

In our previous paper [21], we presented a methodology
for antenna array design based on minimum error bounds. By
minimizing the CRB and the BRB of the image reconstruction,
we obtained the CRB-based array and the BRB-based array,
respectively, as shown in Fig. 1. It is important to note that
there is an intersection between the two arrays, where the
correlation between the antennas is exploited by the EM
algorithm to improve estimation accuracy.

In this section, we will implement the EM-based antenna
switching imager using the aforementioned antenna arrays to
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Fig. 2: Schema of the antenna switching strategy.

Fig. 3: True image of the M31 galaxy.

verify the effectiveness of our proposed radio-astronomical
imager. The core of the antenna array switching strategy is
to alternate between the CRB-based sub-array (AA-CRB) and
the BRB-based sub-array (AA-BRB). Specifically, we utilize
AA-CRB at instant ¢, then switch to AA-BRB at instant ¢t + 1,
and subsequently switch back to AA-CRB at instant £+ 2, and
so on. The antenna switching strategy is illustrated in Fig. 2.

The specific numbers of antennas and visibilities for each
method are presented in Table I. It is worth noting that the
switching antenna method employs the same number of anten-
nas as the CRB-based sub-array alone, or the BRB-based sub-
array alone, which is smaller than the whole array (union of
AA-CRB and AA-BRB subarrays). Additionally, the switching
antenna method significantly reduces the number of visibilities
compared to the whole array. Since the visibilities obtained

Table I: Antenna and visibility numbers of different methods

AA-CRB | AA-BRB | Switching | AA-CRBUAA-
, ! | BRB
Number of 4 : " ! ) : -
antennas ! : :
Number of ss2 1 52 L 552 1616
visibilities . ! ‘

(a) AA-CRB

(c) AA-CRB U AA-BRB

(d) Switching

Fig. 4: Reconstructed images of different methods. (a) AA-
CRB, (b) AA-BRB, (c) AA-CRB U AA-BRB, and (d) Switch-
ing.

directly from the telescope array are utilized, the switching
antenna method offers a cost-effective solution for radio-
astronomical imaging systems while maintaining comparable
imaging performance to the full union of AA-CRB and AA-
BRB.

The M31 galaxy, depicted in Fig. 3, serves as the true
image for our experiments. This image is based on the H2
region in the M31 galaxy and has been previously utilized
for investigating radio-astronomy imaging algorithms [22].
The M31 model image is particularly suitable for testing the
effectiveness of the sparsity prior incorporated in the proposed
imaging algorithms due to its ability to accurately represent
both compact and extended structures.

To prepare the image for processing, the true image is dis-
cretized into N x N pixels with N = 128, and then vectorized,
resulting in x € RV in the system model. Subsequently, the
true image is convolved with the point spread function (PSF)
specific to each method, yielding the true visibility Hx for
each method. In order to simulate the effects of thermal noise
in the telescope arrays, additive white Gaussian noise with zero
mean and a variance of o2 is introduced to obtain the blurred
visibility. For our experiments, we set the noise variance to
% = 10.

B. Performance Evaluation

The reconstructed images of different algorithms are shown
in Fig. 4. It can be seen that the proposed EM-based antenna
switching algorithm can reconstruct the image with almost
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Fig. 5: Performance comparison of different methods. (a)
SSIM, (b) NMSE.

the same quality as the AA-CRBUAA-BRB, which is the
union of the CRB-based sub-array and the BRB-based sub-
array. The quality of the AA-CRB is the worst among all
the configurations. The quality of the AA-BRB is better than
the AA-CRB, but worse than the proposed EM-based antenna
switching algorithm.

To better evaluate the performance of different algorithms,
we perform nyc = 100 Monte Carlo simulations, and we
employ several metrics to evaluate the reconstruction error of
the proposed algorithm, which are the normalized mean square
error (NMSE) and the structural similarity index (SSIM). As
a global metric, the NMSE is defined as
[ — %3
T2 9
where x is the true image and X is the reconstructed image.
The SSIM is a local metric, which is used to measure the
similarity between two images [23] and is defined as

(2/%:,“/5: + Cl)(QUx:i + 02)
(3 + 1 + c1) (03 + 0% + c2)

NMSE =

SSIM = (20)
where p, and p; are the mean values of x and X, respectively,
Jg and O’% are the variances of x and X, respectively, and o,;
is the covariance of x and x. The constants ¢; and cg are used
to stabilize the division with weak denominator. The SSIM is
a value between —1 and 1, where 1 means the two images are
identical.

As shown in Fig. 5, the proposed EM-based antenna switch-
ing algorithm achieves the best performance among all the 24-

antenna configurations. The NMSE of the proposed algorithm
is about 0.14, which is much smaller than that of AA-CRB
and smaller than that of AA-BRB. The SSIM of the proposed
algorithm is about 0.82, which is much larger than that of AA-
CRB and also larger than that of AA-BRB. The performance
of the proposed algorithm is slightly worse, but comparable
with that of AA-CRBUAA-BRB. The performance of the AA-
CRB is the worst among all the configurations, but remains
useful when used as part of a sub-array switching strategy.
The performance of the AA-BRB is better than the AA-CRB,
but worse than the proposed EM-based antenna switching
algorithm.

V. CONCLUSIONS

The exploitation of the antenna sub-arrays in the radio-
astronomy imaging problem is investigated in this paper.
An EM-based antenna switching imaging algorithm was pro-
posed to exploit the antenna sub-arrays. We conducted radio-
astronomical imaging simulations based on the sub-arrays
designed with CRB and BRB criteria. Two metrics, the NMSE
and the SSIM, were adopted to evaluate the performance
of different configurations. The simulation results revealed
that the proposed algorithm can achieve almost the same
performance as the union of the sub-arrays while reducing
dramatically the number of visibilities, which means reducing
the data transmission, the storage pressure, and the computa-
tional load.

APPENDIX
A. Conditional distribution
Given that r;, ~ CN(Hx, X), we can deduce

M1y ~ CN (MHx, M, SM7)

_ _ ——H (21)
Mkrk ~ C./\[(].V[;CHX7 MkEMk )
Moreover, the covariance between Mjrj, and My, is
cov(Myry, Myry) = M EM, (22)
Thus, the joint distribution of y; and Mjr}, is given by
( Yk ) N {Mka} M, =M¥ MkEMg
Myry, M.Hx|" M, =M M,EM,,
(23)

where yr = Mgrg.
Consequently, by defining py and Gy, as given in (10), the
conditional distribution of Myr given yy is

Mrilyr ~ CN(MpHx + pi, Gy) (24)
B. Proof of (9)
Consider the matrix B;, defined as
M. AT
B, = {MZ] = M M| (25)
which satisfies
7T7
BIB, = MiM; + M, M;, = Iy (26)
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and

then,

BNty |y, (B (s — Hx)(r), — Hx)"B]|
. erell  eurf!M, 27)
— SMirklye |+ _— —T
KTklYE MkrkekH MkrkrkHMk
where e, = yr — M Hx.
Thus, after some algebra, we have
Eﬁkrklyk [(rk — Hx)(ry — HX)H]
= B{Exg, v, |y, [Br(rs — Hx)(ry — Hx)" B[] By
— 11 [erel eppll M (28)
_ [Mf Mﬂ Kk k1, | ek
pre; G+ prpg | Mg

— =H ~rH N
ErZy + M, GeMy

resulting in Ej, as defined in (9).
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