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Abstract—This paper addresses the challenge of interference
mitigation and reduction of computational cost in the context of
radio interferometric imaging. We propose a novel maximum-
likelihood-based methodology based on the antenna sub-array
switching technique, which strikes a refined balance between
imaging accuracy and computational efficiency. In addition, we
tackle robustness regarding radio interference by modeling the
additive noise as t-distributed. Through simulation results, we
demonstrate the superiority of the t-distributed noise model over
the conventional Gaussian noise model in scenarios involving
interferences. We evidence that our proposed switching approach
yields similar imaging performances with far fewer visibilities
compared to the full array configuration, thus, diminishing the
computational complexity.

Index Terms—Expectation-Maximization algorithm, antenna
array processing, interferometry, radio-astronomical imaging.

I. INTRODUCTION

The rapid advancement of new-generation radio telescopes
in the last decades, exemplified by projects like the Square
Kilometer Array (SKA) [1, 2] employing over a hundred
thousand antennas, aims for an era of unprecedented sensi-
tivity and resolution in astronomical measurements. However,
alongside this expansion in observational capacity arises a dual
challenge: 1) the susceptibility to interferences, notably Radio
Frequency Interference (RFI), due to heightened sensitivity,
where the presence of RFI can significantly degrade the qual-
ity of reconstructed images [3–6], and 2) the computational
burden imposed by the large amount of data generated by
the increasing number of antennas. This challenge is pressing,
with estimates indicating that the processing demand for SKA
Phase I can reach up to 100 Megawatts, split between the
telescope itself and the data processing centers [7]. This poses
a significant challenge in terms of energy consumption and
cooling requirements, especially for telescopes situated in
remote semi-desert regions [8]. These demands underscore the
need for innovative approaches that can effectively mitigate
interference phenomena, minimize energy consumption, and
preserve imaging quality during processing, which forms the
focal point of this paper.

First, to address the challenge of interferences, various RFI
mitigation strategies have emerged. Broadly, these strategies
can be categorized into two types: collaborative RFI mitigation
[9, 10], which relies on prior information about the RFI
source, and blind passive RFI mitigation. In this paper, we
focus on the latter. Conventional approaches often rely on
identifying and flagging strong outliers in the raw data, em-
ploying techniques such as manual inspection [11] or spatial
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filtering on the correlation matrix [12–14]. While effective
for strong interferences, such methods struggle with weaker
signals, increasingly prevalent with the growing number of
sensors in large-scale interferometers [15]. Unlike thermal
noise, which can be appropriately modeled using a Gaussian
distribution, RFI originates from diverse sources such as
communication systems or high voltage transmission lines,
making it challenging to model accurately [16, 17]. Theoretical
and empirical investigations have demonstrated the relevance
of t-distribution in modeling interference [18, 19].

Second, to tackle the computational complexity challenge,
efficient techniques for partitioning and leveraging antenna
sub-arrays, dedicated to different types of measurement mis-
sions, have been proposed to balance the imperatives of ac-
curacy and computational cost. Antenna placement strategies,
based on optimization of estimation lower bounds, have been a
focal point in the literature. Notably, methodologies leveraging
criteria such as the Cramér-Rao bound (CRB) [20–23] and the
Barankin-type bound (BTB) [24–27] have been proposed. By
employing these criteria, the selection of antenna sub-arrays
presents itself as a promising avenue for reducing the number
of antennas utilized in the imaging process, thereby curtailing
computational complexity and energy consumption. However,
while these approaches demonstrate efficacy under specific
conditions, their performances may vary depending on the
application scenario. For instance, CRB-based sub-array selec-
tion tends to yield a beampattern with a thin mainlobe, whereas
BTB-based methods provide a trade-off between mainlobe
width and sidelobe level. Recognizing the complementary
strengths of these methodologies, we propose a switching
sub-array method that combines both approaches, rather than
privileging one over the other depending on application scenar-
ios. Our proposed methodology relies on dynamic switching
between sub-arrays over time, exploiting the inherent corre-
lation between them. This approach reduces the number of
measurements (visibilities) required, significantly decreasing
the computational complexity of the imaging process. Further-
more, by utilizing fewer antennas simultaneously, we minimize
overall power consumption and cooling needs, contributing to
a more cost-effective and energy-efficient solution for next-
generation radio interferometers.

In this paper, we propose an antenna sub-arrays switching
imaging algorithm to address the interference mitigation and
high computational demand. A t-distribution noise model is
employed to model radio interferences, leveraging its heavy-
tailed structure to model the outliers and thereby improve
the imaging quality compared to traditional additive Gaussian
noise model. Due to the intractability of the direct maximum
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likelihood estimation method, the proposed strategy is for-
mulated as an expectation-conditional maximization (ECM)
algorithm.

II. RADIO INTERFEROMETRIC DATA MODEL

Radio interferometers involve measuring the spatial coher-
ence of the electric field between pairs of antennas in the
antenna array. These measurements, known as visibilities, pro-
vide information about the electromagnetic radiation emitted
by celestial sources under observation. The main idea of this
paper is to dynamically switch the antenna sub-arrays during
the observation process, which leads to a selection of qk
sensors from the whole array composed of q sensors for the k-
th snapshot block. This results in a visibility vector is denoted
by robsk ∈ CNk=

qk(qk−1)

2 (in contrast to the full visibility
vector denoted by rk ∈ CN=

q(q−1)
2 ). Specifically, in radio-

interferometry the visibility robsk is obtained by the vector-
ization of the upper triangular part of the sample covariance
matrix of the observed signal at the sensor level, without the
diagonal terms [1]. The (unobserved) full visibiliy vector reads

rk = Hx+ bk, k = 1, . . . ,K (1)

with K denoting the total number of snapshot blocks and
where H ∈ CN×n is the forward operator, corresponding to a
spatial discrete Fourier transform, symbol x ∈ Rn represents
the image vector of size n (number of image pixels) to be
reconstructed, and bk ∈ CN is the noise vector corresponding
to the k-th observation block. The noise bk is modeled by a t-
distribution to take into account the presence of interferences,
i.e., [bk]i = 1√

τki
[tk]i, i = 1, · · · , N with the speckles

tk ∈ CN being independent and identically distributed (i.i.d.)
complex Gaussian random variables with zero mean and
variance σ2, i.e., tk ∼ CN (0, σ2IN ). The texture τki follows
a Gamma distribution with the shape and the inverse-scale
parameters both ν/2, i.e., τki ∼ Γ

(
ν
2 ,

ν
2

)
, where the degree

of freedom ν is a positive tuning parameter, which models the
non-Gaussianity of the noise.
To assess the effectiveness of modeling visibility noise, we
conducted a comparative analysis between fitting the noise
with a t-distribution and a Gaussian distribution. Both dis-
tributions were applied to fit the simulated visibility noise
including RFI. It is worth mentioning that the t-distribution
offers a superior fit to the visibility noise, particularly in the
presence of RFI. This observation highlights the relevance of
the t-distribution in modeling visibility noise, especially when
dealing with interferences (cf. supplementary materials, Fig.3).

Our objective is to estimate the image vector x, the noise
power σ2, and the degree of freedom ν from the noisy ob-
served visibilities robsk with k = 1, · · · ,K. The log-likelihood
function of the observed visibilities can be expressed as

L(x, σ2, ν|robs) = ln

K∏
k=1

p(robsk |x, σ2, ν)

=

K∑
k=1

∫
ln p(rk|x, σ2, ν)drmiss

k

(2)

where robs is the collection set of
{
robs1 , . . . , robsK

}
, and rmiss

k

denoted the missing part of rk.

A regularization functionR(x) is added to take into account
the sparsity of image vector x, leading to the penalized
maximum likelihood estimation problem. Finally, The inter-
ferometric imaging problem can be formulated

(x̂, σ̂2, ν̂) = argmax
x,σ2,ν

K∑
k=1

∫
ln p(rk|x, σ2, ν)drmiss

k +R(x) (3)

III. ECM-BASED IMAGING ALGORITHM

The aforementioned regularized maximum likelihood prob-
lem is intractable due to the form of t-distribution and the
missing part of visibilities, i.e, rmiss

k . To overcome these
obstacles, we propose employing a variant of the EM algo-
rithm known as the ECM algorithm [28]. The latter consists
in performing several E-step, calculating the conditional ex-
pectation of the complete-data log-likelihood, and CM-step,
conditionally maximizing that expectation with respect to the
model parameters, one unknown parameter at a time, while
holding the others fixed. Given that we have three parameters
to estimate, namely {σ2,x, ν} (which will be denoted in the
sequel by θ), and the likelihood function is not separable with
respect to these parameters, we adopt a sequential estimation
approach. Specifically, the estimation of each parameter occurs
with the other two parameters held fixed, leading to the use
of the CM-step rather than the traditional M-step.

In our case, we consider {robsk , rmiss
k , τki} with k =

1, · · · ,K, i = 1, 2, . . . , N as the complete data space. The
complete log-likelihood function can be written as

L(θ|robs, rmiss, τ ) =

K∑
k=1

Nk∑
i=1

ln Γ
(
τki|

ν

2
,
ν

2

)
+

K∑
k=1

ln CN
(
robsk , rmiss|MkHx, σ2MkΩ

−1
k MH

k

) (4)

where Ωk = diag(τk1, · · · , τkN ), and Mk = T (Pk ⊗Pk) ∈
RNk×N with Pk the selection matrix sensors for the k-th
snapshot block, constructed by selecting qk sensors over q,
and T (·) is the operator that retains only the upper triangular
terms during the vectorization of the sample covariance matrix.

A. E-step

Proposition 1. Denoting Q1(x, σ
2|θ(m)) the part of

Q(θ|θ(m)) relative to σ2 and x, and Q2(ν|θ(m)) the part
of Q(θ|θ(m)) relative to ν, the E-step reads

Q1(x, σ
2|θ(m)) ∝ −

K∑
k=1

Nk ln(σ
2)− 1

σ2

K∑
k=1

(
eH
k MT

k Ω̃
(m)
k Mkek

)
(5)

where Ω̃
(m)
k ∈ RNk×Nk is a diagonal matrix defined as

Ω̃
(m)
k = diag

(
τ̃k1

(m)
, . . . , τ̃kNk

(m)
)

, ek indicates the resid-

ual vector defined as ek ≜ rk −Hx, and

Q2(ν|θ(m)) =

K∑
k=1

Nk∑
i=1

ν

2

(
˜ln(τki)

(m)

− τ̃ki
(m)

)

+

(
K∑

k=1

Nk

)(ν
2
ln
(ν
2

)
− ln

(
Γ
(ν
2

))) (6)
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with τ̃ki
(m)

=
ν(m) + 1

ν(m) + σ−2(m)
(
[Mke

(m)
k ]i

)2 (7)

˜ln(τki)
(m)

= ϕ

(
ν(m) + 1

2

)
− ln

ν(m) + σ−2(m)
(
[Mke

(m)
k ]i

)2
2


(8)

where ϕ(·) is the digamma function defined as the logarithmic
derivative of the gamma function.

The proof can be found in the supplementary material.

B. CM-step

1) Update of σ2 and x: The maximization step consists in
solving the optimization problem

x(m+1), σ2(m+1) = argmax
x,σ2

(
Q1(x, σ

2|θ(m)) +R(x)
)

(9)

The resulting optimization problem can be solved alternatively
to produce the updated estimated sky image x(m+1) and the
noise power σ2(m+1), which results in

σ2(m+1) =
1∑K

k=1 Nk

K∑
k=1

(
e
(m)
k

H
MT

k Ω̃
(m)
k Mke

(m)
k

)
(10)

x(m+1) = argmin
x

K∑
k=1

eHk MT
k Ω̃

(m)
k Mkek +R(x) (11)

The ℓ1-norm is used as the regularization function to pro-
mote the sparsity in the image vector x, i.e. R(x) = α∥x∥1,
where α is a positive tuning parameter. A higher value of α
promotes a sparser image vector x, resulting in more elements
of x being zero. We employ the ISTA algorithm [29] to solve
(11), which gives

x(m+1) = prox
α||x||1

(
x(m) +

K∑
k=1

HHMT
k Ω̃

(m)
k Mkek

)
(12)

and the proximal operator is defined as proxα||u||1(u)i =
sgn(ui) (|ui| − α)+ with (|ui| − α)+ = max(0, |ui| − α).

2) Update of ν: The maximization step for the update of
ν consists in solving the optimization problem, ν(m+1) =
argmaxν Q2(ν|θ(m)). It can be addressed by finding the crit-
ical points of the objective function. To do so, we differentiate
Q2(ν|θ(m)) with respect to ν, setting the derivative to zero,
and then solving for ν. The derivative takes the form

∂Q2(ν|θ(m))

∂ν
=
1

2

K∑
k=1

Nk∑
i=1

(
˜ln(τki)

(m)

− τ̃ki
(m)

)

+
1

2

(
K∑

k=1

Nk

)(
ln
(ν
2

)
+ 1− ϕ

(ν
2

)) (13)

By setting this derivative to zero and after some algebraic
manipulations, the update of ν(m+1) becomes the solution of

1∑K
k=1 Nk

K∑
k=1

Nk∑
i=1

[
ϕ

(
ν(m) + 1

2

)
− ln

(
ν(m) + 1

2

)]

− ϕ(
ν

2
) + ln

(ν
2

)
=

K∑
k=1

Nk∑
i=1

− ln
(
τ̃ki

(m)
)
+ τ̃ki

(m)∑K
k=1 Nk

− 1

(14)

By noting that τ − ln τ ≥ 1, ∀τ > 0, we obtain that the right
hand side of the above equation is non-negative. In addition,
the function −ϕ(ν/2) + ln(ν/2) monotonically decreases in
the interval (0,+∞), ensuring the uniqueness of the solution.
We employ a one-dimensional search method to solve (14)
for ν. In our context, the search interval for ν is restricted to
2 < ν < 10 because the complex t-distribution exhibits finite
second-order moments for ν > 2 and tends to a Gaussian
for ν ≈ 10 as established by [30] (a summary of the proposed
algorithm is provided in the supplementary materials Algo. 1).

IV. NUMERICAL EVALUATION

A. Simulation Setup

In this section, we employ the proposed algorithm and
validate its effectiveness by conducting simulations in the
context of radio-astronomical imaging. The simulations are
based on the existing radio telescope VLA [31], which is
composed of three branches with 9 antennas on each branch,
resulting into a total of 27 antennas. The M31 galaxy serves
as the true image, which is based on the H2 region in the M31
galaxy [32] and has been previously utilized for investigating
radio-astronomical imaging algorithms [33]. The true image is
discretized into 84× 84 pixels, and then vectorized, resulting
in x ∈ R7056 in the system model (1). Then the true visibility
is calculated from the discretized true image x. To simulate
thermal noise, additive white Gaussian noise with zero mean
and a variance of σ2 is incorporated into the visibilities. To
introduce RFI, we model 100 RFI events as additional point
sources with same power into the scene. 1% of the visibilities
are affected by the RFI, reflecting the selective impact on
sensors. The power of each RFI event is quantified relatively to
the source power, as defined by PRFIdB = 10 log10(PRFI/P0),
where P0 = ∥x∥2 is the source power. The number of
observation blocks K is set to 24. The performance of different
algorithms is assessed using the normalized mean square error
(NMSE) defined as ∥x̂− x∥2/∥x∥2 with x̂ the reconstructed
image and the structural similarity index (SSIM) [34].

B. Simulation Results

First, to validate the effectiveness of the t-distribution noise
model, we conducted a comparative analysis between the non-
switching version (obtained by setting Mk = IN , ∀k) of the
imaging algorithm proposed in this paper and a Gaussian-
based approach, which assumes white Gaussian-distributed
noise. The performance of the two imagers with full array
VLA, in terms of the NMSE of the reconstructed images
against different RFI noise level with 1000 Monte Carlo
is shown in Table. I. The results indicate that the imaging
algorithm based on the t-distribution noise model consistently
outperforms that based on a Gaussian noise assumption.

Table I: NMSE of non-switching imagers for various RFI.

RFI level (in dB) 1 2 3 4 5

Full-VLA Gaussain 0.032 0.033 0.037 0.043 0.052
Full-VLA t-student 0.029 0.029 0.029 0.029 0.029
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Next, to implement the proposed switching robust imaging
algorithm, two specific sub-arrays will be used. Thus, in order
to avoid poor selections and/or potential ambiguities in sub-
array selection arising from random switching, we advocate
for a method that toggles between two types of sub-arrays
based on the minimization of mean square error (MSE) lower
bounds, namely, the CRB and the BTB, building upon our
previous work [25]. The CRB-based antenna selection method
yields a beampattern with a thin mainlobe, while the BTB-
based method provides a relevant trade-off between mainlobe
width and sidelobe level. The switching approach aims at
leveraging the benefits of both methods. These antenna sub-
arrays (AS) are derived from the full VLA configuration
comprising 27 antennas, and are designated as AS-CRB and
AS-BTB based on the CRB and BTB criteria, respectively.

We evaluated the performance of the proposed switching
approach alongside CRB-based and BTB-based sub-arrays,
as well as the full VLA configuration. The NMSE and
SSIM of reconstructed images obtained from 1000 Monte
Carlo simulations under 5 dB RFI noise powers is given
in Table II. Reconstructed images under 5 dB RFI noise
power are showcased in Fig. 1. It should be noted that we
set the convergence criteria for all methods to the same
standard, defined as the stability of the reconstructed image
(||x(m+1) − x(m)||2 ≤ ϵ = 10−4). As shown from the
NMSE and SSIM, and by comparing directly the reconstructed
images, the proposed switching method performs similarly to
the full VLA and consistently outperforms both AS-CRB and
AS-BTB, particularly under strong RFI conditions.

The gain of the computational complexity (for a large N )
is (β2 + 3β)/4 in which β = Nk/N is ratio of visibility
selection defined as number of selected visibilities divided by
full visibilities. Table II details the number of antennas and
visibilities required by each method. Notably, the switching
method requires approximately one-third of the visibilities
compared to the full array, and the actual runtime for 10
iterations is consistent with the ratio of selected visibilities,
further highlighting the efficiency of the switching algorithm.
Fig. 2(a) illustrates the evolution of the difference between
the reconstructed images at each iteration until convergence
condition is met (ϵ = 10−4). The switching method con-
verges much faster than the CRB and BTB sub-arrays, while
importantly maintaining a convergence speed close to that
of the full VLA. To compare image quality after a fixed
number of iterations, Fig. 2(b) showcases the reconstructed
images after 10 iterations. Here, the switching method achieves
image quality comparable to the full VLA, while surpassing
both AS-CRB and AS-BTB. Importantly, a comparison of
the images in Fig. 2(b) and Fig. 1 reveals that the image
quality of the switching method after 10 iterations is similar
to its converged state, indicating a significant reduction in
computational time. In summary, the proposed switching sub-
array approach effectively balances image quality with com-
putational efficiency. It achieves image fidelity comparable to
the full VLA while utilizing significantly fewer antennas and
visibilities. Additionally, it converges faster and yields superior
image quality than CRB and BTB-based sub-arrays.

Fig. 1: Reconstructed image for RFI 5dB after satisfying the
convergence condition.

(a)

(b)

Fig. 2: (a) Convergence of x(m). (b) Reconstructed images
after 10 iterations (RFI 5dB).

Table II: Number of antennas/visibilities required by each
method, NMSE, SSIM, and the run time of 10 iterations of
each method for RFI 5dB.

Ant. No. Vis. No. NMSE SSIM Run-time

N
on

-
sw

itc
hi

ng Array-Full 27 8424 0.0279 0.965 1.6098s
Array-CRB 15 2520 0.2058 0.703 0.5465s
Array-BTB 15 2520 0.0446 0.858 0.5502s

Switching method 15 2520 0.0364 0.908 0.5553s

V. CONCLUSIONS

This paper presents an antenna switching imaging algorithm
for radio astronomy aiming to tackle the challenges of interfer-
ence mitigation at reduced computational cost. We formulated
the imaging as a maximum likelihood estimation problem,
incorporating a t-distribution noise model within a sub-array
switching framework. Leveraging this model, we derived an
ECM algorithm for efficient image reconstruction. Simulations
validated the superiority of the t-distribution model in the
presence of RFI. The proposed switching algorithm achieved
image quality comparable to the full-array VLA configuration
while using significantly fewer visibilities and maintaining
similar convergence times. These results demonstrate the ef-
ficacy of the proposed approach in achieving low-cost and
robust radio-astronomical imaging.
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Supplementary materials

A. Comparison of t-distribution fitting and Gaussian distribu-
tion fitting

The following figure displays a comparison of t-distribution
fitting and Gaussian distribution fitting. Initially, clean visibil-
ities were derived from a specific sky image. Subsequently,
additive white Gaussian noise with zero mean and a variance
of σ2 was introduced to simulate thermal noise. Additionally,
several RFI events were simulated as additional point sources
with equal power to represent RFI noise, affecting 1% of
the visibilities to reflect the selective impact on sensors. This
process resulted in the simulated visibility noise.

Fig. 3: Comparison of t-distribution fitting and Gaussian
distribution fitting.

B. Proof of Proposition 1
Proof. Considering the data model defined in (1), the complete
data log-likelihood is expressed as:

Q1

(
x, σ2|θ(m)

)
= Eτ |robs,θ(m)

(
L(θ|robs, rmiss, τ )

)
(15)

By substituting the complete data log-likelihood function with
(4) and disregarding terms not dependent on σ2, we derive

Q1(x, σ
2|θ(m)) ∝

K∑
k=1

Eτ |robs
k ,θ(m)(− ln |σ2MkΩ

−1
k MH

k |

− eHk MT
k

(
σ2MkΩ

−1
k MH

k

)−1
Mkek)

∝
K∑

k=1

(
− ln |σ2INk

|+ ln |Ω̃(m)
k | − eHk MT

k

Ω̃
(m)
k

σ2
Mkek

)

∝
K∑

k=1

(
−Nk ln(σ

2)− eHk MT
k

Ω̃
(m)
k

σ2
Mkek

)

where

Ω̃
(m)
k = Eτ |robs

k ,θ(m)

((
MkΩ

−1
k MH

k

)−1
)

(16)

The calculation of Ω̃
(m)
k involves determining the condi-

tional distribution of τki given rk, that is a Gamma distribution
[28]

τki|rk ∼ Gamma

(
ν + 1

2
,
ν + σ−2[rk −Hx]2i

2

)
(17)

with expectation

Eτki|rk (τki) =
ν + 1

ν + σ−2[rk −Hx]2i
, i = 1, . . . , N (18)

Considering the fact that Ωk is a diagonal matrix and in-
corporating the effect of the selection matrix Mk, we have(
MkΩ

−1
k MH

k

)−1
=
(
MkΩkM

H
k

)
and thus we obtain

[Ω̃
(m)
k ]ii = τ̃ki

(m)
=

ν(m) + 1

ν(m) + σ−2(m)([Mke
(m)
k ]i)2

(19)

As for the part of ν, based on the complete-data log-
likelihood function (4) and keeping only the terms dependent
on ν, we derive

Q2(ν|θ(m)) =

K∑
k=1

Eτ |robs,σ2(m)

(
Nk∑
i=1

(
ln Γ

(
τki|

ν

2
,
ν

2

)))
(20)

Considering the definition of the Gamma function p(τki|ν) =
( ν

2 )
ν
2

Γ( ν
2 )

τ
ν
2−1

ki e−
ν
2 τki , the surrogate function can be developed as

Q2(ν|θ(m)) =

K∑
k=1

Nk∑
i=1

ν

2
ln
(ν
2

)
− ˜ln(τki)

(m)

− ln(Γ
(ν
2

)
) +

ν

2

(
˜ln(τki)

(m)

− τ̃ki
(m)

)
∝

K∑
k=1

Nk∑
i=1

ν

2
ln
(ν
2

)
− ln(Γ

(ν
2

)
)

+
ν

2

(
˜ln(τki)

(m)

− τ̃ki
(m)

)
with

τ̃ki
(m) ≜ Eτki|robsk ,σ2(m)(τki)

and
˜ln(τki)

(m)

≜ Eτki|robsk ,σ2(m)(ln(τki))

defined as in (7) and (8).
This ends the proof.

C. ECM antenna switching imager

In the following table we outline the proposed ECM antenna
switching imager

Algorithm 1: ECM antenna switching imager

Input: H, α, and robsk , k = 1, . . . ,K
Output: Estimates of x̂, σ̂2 and ν̂

Initialisation: x(m) ← x(0), (σ2)(m) ← (σ2)
(0), and

ν(m) ← ν(0)

1 while stop criterion not met do
2 Calculate e

(m+1)
k and Ω̃

(m)
k using (7) for

k ∈ [1,K] // E-step
3 Update σ2(m+1) using (10) // CM-step
4 Update x(m+1) using (12) // CM-step
5 Update ν(m+1) using (14) // CM-step
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