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Abstract—Interferences and computational cost pose signifi-
cant challenges in large-scale interferometric sensing, impacting
the accuracy and numerical efficiency of imaging algorithms. In
this paper, we introduce an imaging algorithm using antenna
switching based on expectation-maximization (EM) to address
both challenges. By leveraging the low-rank noise model, our ap-
proach effectively captures interferences in interferometric data.
Additionally, the proposed switching strategy between different
sub-arrays reduces significantly the computational complexity
during image restoration. Through extensive experiments on
simulated datasets, we demonstrate the superiority of the low-
rank noise model over the Gaussian noise model in the presence of
interferences. Furthermore, we show that the proposed switching
approach yields similar imaging performance with fewer anten-
nas compared to the full array configuration, thereby reducing
computational complexity, while outperforming non-switching
configurations with the same number of antennas.

Index Terms—Antenna array processing, Barankin Bound,
Cramér-Rao bound, EM algorithm, interferometric array.

I. INTRODUCTION

The advent of large-scale big-data interferometers [1H3]
has seen a dramatic increase in both the size and number
of antennas. This expansion aims to enhance the sensitivity
and resolution of interferometry. However, the concomitant
increase in antenna numbers and data dimensionality poses
significant challenges, making the computational imaging pro-
cess more intricate and computationally demanding [4, [5]]. As
one of the methods to address this challenge, the concept of
antenna sub-arrays selection has been introduced to mitigate
the computational complexity inherent to the imaging process.
This strategy involves partitioning antennas into sub-arrays and
utilizing only a subset of antennas at each time [6 [7].

Various antenna selection techniques based on estimation
lower bounds have been proposed to optimize the sub-array
selection, including the Cramér-Rao bound (CRB) [8H10]] and
the Barankin-type bound (BTB) [11]]. These techniques lever-
age the statistical performance of the interferometric imaging
estimators. Recognizing the merits of both approaches, we
propose a strategy that combines these two methods, instead
of favoring one over the other based on the application sce-
narios. Our proposed strategy involves dynamically switching
between sub-arrays over time, capitalizing on the correlation
between sub-arrays.

Moreover, a significant challenge in high-sensitivity inter-
ferometric imaging is the presence of interferences, such as
Radio Frequency Interference (RFI) [12H14]. RFI comprises
unwanted signals originating from various sources, such as
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communication systems or high voltage transmission lines.
Traditional methods often rely on identifying and flagging
strong outliers in the raw data using techniques like the
generalized likelihood ratio test or manual inspection [15].
Various methods to perform spatial filtering on the correlation
matrix have been proposed [[14, [16]]. While effective for strong
interferences, such methods struggle with weaker signals,
increasingly prevalent with the growing number of sensors in
large-scale big-data interferometers.

To address this gap, building upon the low-rank perturbation
model’s success in antenna array calibration [[17], we propose
its application in the presence of interference sources, lever-
aging its inherent low-rank structure to improve the imaging
quality compared to traditional additive Gaussian noise model
[L8, [19]]. Furthermore, we introduce an antenna sub-array
switching strategy based on the low-rank perturbation model
for interferometric imaging. The proposed strategy is formu-
lated as an expectation-maximization (EM) algorithm, exploit-
ing the correlation between antenna sub-arrays [20], leading
to estimate an augmented array visibilities vector. Through
simulations based on the existing Very Large Array (VLA)
radio interferometer, we showcase the effectiveness of the low-
rank based model in terms of normalized mean square error
(NMSE). Our results demonstrate that the proposed antenna
switching approach enhances imaging quality while reducing
computational complexity. In summary, our key contributions
are as follows:

o We extend the low-rank perturbation model recently used
in the literature [17, [21]], to address the challenge of
interference. Our method significantly enhances imaging
quality compared to traditional approaches relying on
additive Gaussian noise models.

e Our work introduces a novel antenna sub-array switching
strategy. This strategy utilizes an EM algorithm to exploit
the correlations between sub-arrays. The switching mech-
anism reduces the computational cost while preserving
high quality image.

o The simulations, based on the VLA telescope configura-
tion, demonstrate the practical benefits of our approach,
which is promising for large-scale radio telescopes.

II. INTERFEROMETRIC DATA MODEL

Interferometry involves measuring the spatial coherence of
the electric field between pairs of antennas within the an-
tenna array. These measurements, termed visibilities, provide
information about the electromagnetic radiation emitted by
celestial sources under observation. The main idea of this



paper is to dynamically switch the antenna sub-arrays during
the observation process, a formulation expressed as

yie=Mgrg, k=1,--- | K 9]

where M, € RP**Nk represents the switching matrix, con-
structed by selecting pr, < N rows from the identity matrix
In. The vector r;, € CV denotes the complete visibility vector,
while y;, € CP*+ represents the observed visibilities in the k-
th observation block with K denoting the total number of
observation blocks.

For each complete visibility vector ry, the interferometric
imaging problem can be formulated as

riy = Hpx + Wiy, +ng 2

where H;, € CNX™ is the forward operator, corresponding
to the spatial Fourier transform, symbol x € R™ represents
the image vector of size m (number of image pixels) to be
restored. The additional noise is modeled as a combination
of thermal noise nj, which follows a Gaussian distribution
n; ~ CN(0,0%Iy), and interferences modeled by a low-rank
model Wy, where v, ~ CN(£,1,,), W;, € CV*", and
£ € C". Typically, n < N.

Depending on the application, the form of £ varies. For
instance, in radar [22, 23], £ = 0, while in radio astronomical
interferometry [17], £ = vec(I). In the following, we assume
£ = vec(I) and the case £ = 0 can be easily deduced.

Let & = {x, Wy,0?} denote the set of unknown param-
eters. The log-likelihood function of the observed visibilities
can be expressed as

K
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where the weighted f>-norm is defined as ||z|% = z"/ Az and
€L =Yr — MkaX — Mka vec(I) (4)
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The resulting regularized maximum likelihood problem for
the imaging problem is formulated as

§:argmaxL(y1,~~ , VK |0) + R(x) (6)
P

where R(x) denotes the regularization function that promotes
sparsity within the image vector x.

III. EM-BASED IMAGING ALGORITHM

The regularized maximum likelihood problem is quite dif-
ficult to tackle especially in the presence of missing data
which is due to a switching interferometric array. We thus
propose the utilization of an EM algorithm variant, namely,
the Expectation-conditional maximization either (ECME) al-
gorithm [24]. The term “either” refers to the fact that the
updates of 02 and W are conducted by maximizing the
conditional expectation of the complete-data log-likelihood
function, and the update of x is performed by maximizing
directly the actual (incomplete data) log-likelihood function.
In our case, we consider {ry,yx} with k =1,--- , K as the
complete data space and y; = Mjry represents the observed
part of rg.

A. E-step

The expectation of the log-likelihood function of the com-
plete data given the observed data and the current estimate of
the parameters of interest is given by

Q(016™) =E, ., oom [logp(y,r,7/6)]
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where the vector r comprises all ry, £ = 1,2,..., K,
similarly for y. After applying the inner expectation with
respect to g, the surrogate function reads
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To complete the calculation of the () function, we now need
to handle the outer expectation with respect to ry, which is
given by the following Proposition.

Proposition 1. Denoting Q,(c%|0™)) the part of Q(0]0(™))
relative to o2, and Qo(Wy|0™) the part of Q(6)6(™)
relative to Wy, the E-step reads
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The proof can be found in the supplementary material.
B. M-step
Updating o2 and W, involves respectively
(0™ = arg max Q1 (2|0
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Updating x involves maximizing directly the observed
data log-likelihood function (3) given the current estimate of
W and (62)(m+1), which is given by

K 2
x(m ) = arg minz (He’(“m)Hz“’")> +R(x) (23)
X k=1 K

Lm) denotes the inverse of matrix Eim).

To promote sparsity in the image, a wide variety of tech-
niques are available, including, for example, ¢, priors with
0 < p <1 and Sparse Bayesian Learning (SBL) techniques
[25H27]. However, as is usually done successfully in radio as-
tronomy [28.[29]], an ¢;-norm will be used as the regularization
function in the sequel, i.e., R(x) = «||x||;. We employ the
Iterative Soft-Thresholding Algorithm (ISTA) [30] to solve this
optimization problem. The resulting solution is expressed as

K
m 1 Hs—1(m m
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Here, the proximal operator is defined as

where 3,

x(mD — prox
allx|l1

prox (u); = sgn(u;) (Ju;| —a) (25)

allxl1
with (Ju;| —a), = max(0, |u;| — ). This procedure ef-
ficiently updates x in an iterative manner, incorporating
sparsity-inducing regularization with parameter o.
The low-rank ECME-based array switching imaging algo-
rithm is summarized in Algorithm 1.

Algorithm 1: ECME-based antenna switching imager

Input: H;, «, and yg, k = 1 K

Output: Estimates of X, Wk, and o2

Initialisation: x(™) « x(9) W,(Cm) — W,(CO), and
(0.2)(777,) - (02)(0)

1 while stop criterion not met do

2 E-step: for £k =1,..., K do

3 calculate ¥;, from (13)

4 compute (; from (17)
—(m)

5 compute yyH .~ from (18)

6 M-step: for Kk =1,..., K do

7 L update W( e ) using (22)

s | obtain (¢2)(™*D) from (21)
9 | update x(m+1) ysing (24)

IV. NUMERICAL EVALUATION

In this section, we employ the proposed algorithm and
validate its effectiveness by conducting simulations in the field
of radio astronomical imaging. The simulations are based on
the existing radio-astronomical telescope Very Large Array
(VLA) [31], which is composed of three branches with 9
antennas on each branch, resulting into a total of 27 antennas.
The M31 galaxy serves as the true image, which is based on
the H2 region in the M31 galaxy [32] and has been used for
investigating radio-astronomy imaging algorithms [28]].

The true image is discretized into 64 x 64 pixels, and then
vectorized, resulting in x € R4096 i the system model (2).
Then the true visibility is calculated from the discretized true
image x. To simulate thermal noise, additive white Gaussian
noise with zero mean and a variance of o2 is incorporated
into the visibilities. To simulate RFI noise, we model 100
RFI events as additional point sources with same power into
the scene. Only 20% of the visibilities are affected by the
RFI, reflecting the selective impact on sensors. The power of
each RFI event is quantified relatively to the source power,
as defined by Prrigg = 101og;o(Prri/FPo), where Py = ||x||?
is the source power. The number of observation blocks K
is set to 22. The performance of different algorithms is
assessed using the structural similarity index (SSIM) [33]]
and the normalized mean square error (NMSE) defined as
||x — x]|?/||x||?, where X denotes the reconstructed image.

In the following part of simulation, firstly, we demonstrate
that the low-rank imaging algorithm without switching strategy
outperforms the Gaussian-based imaging algorithm in the pres-
ence of RFI noise. Then, we evaluate the imaging performance
of the proposed antenna switching algorithm, and we compare
it with non-switching procedures.

Due to space constraints, additional simulation results can
be accessed in our open-source folder [34)]. These include
simulations concerning imaging restoration with varying levels
of low-rank noise and RFI noise power.
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Fig. 1: Reconstructed images of the three methods with RFI
noise power -1 dB.

A. Simulation 1: Low-rank based imager versus Gaussian
based imager with RFI noise

Figure 1 showcases the reconstructed images under —1 dB
RFI noise. The results indicate that the imaging algorithm
based on the low-rank noise model consistently outperforms
that based on a standard Gaussian noise assumption in terms
of NMSE, with reconstructed images more closely resembling
the true image.

B. Simulation 2: Low-rank based switching imager

To alleviate the computational burden of the imaging algo-
rithm, we introduce a switching strategy to alternate between
different sub-arrays. To avoid poor selections and/or poten-
tial ambiguities in sub-array selection arising from random
switching, we advocate for a method that toggles between two
types of sub-arrays based on the minimization of mean square
error (MSE) lower bounds, namely, the Cramér-Rao Bound
(CRB) and Barankin-Type Bound (BTB), building upon our
previous work [7]. The CRB-based antenna selection method
yields a beampattern with a thin mainlobe, while the BTB-
based method provides a relevant trade-off between mainlobe
width and sidelobe level [36]]. The switching strategy aims
to leverage the benefits of both methods.

The sub-arrays are derived from the full VLA configura-
tion comprising 27 antennas. These antenna sub-arrays (AS),
designated as AS(CRB) and AS(BTB) based on the CRB and
BTB criteria respectively, along with the proposed switching
strategy, are visually represented in Fig. 3. Detailed infor-
mation regarding the number of antennas and visibilities for
each method is provided in Table I. Computational efficiency
was also assessed. It can be shown that the gain of the
computational complexity (for a large N) is 52 in which
B = pi/N is ratio of visibility selection defined as number of
selected visibilities divided by full visibilities. Furthermore,
the performance evaluation of the proposed switching strategy,
in conjunction with both CRB-based and BTB-based sub-
arrays, as well as the full array VLA, is depicted in Fig. 2,
illustrating the NMSE of the reconstructed images against the
power of the RFI noise with 100 Monte Carlo simulations.
The reconstructed images under 1 dB RFI noise power are
showcased in Fig. 3.

The proposed switching strategy outperforms both CRB-
and BTB-based sub-arrays in terms of NMSE. Additionally,
the reconstructed image using the proposed switching strategy
closely resembles the result obtained with the full array
VLA. In summary, the proposed switching strategy maintains
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Fig. 2: Evolution of NMSE for each method with varying RFI
noise power.
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Fig. 3: Reconstructed image of the four methods with RFI
noise power 1 dB.

Table I: Number of antennas/visibilities required by each
method, NMSE and SSIM of each method for RFI 1dB.

Ant. No. Vis. No. NMSE SSIM

. .%D Array-Full 27 7722 0.1060 0.8121
5 § Array-CRB 15 2310 0.3149 0.5172
g2 Array-BTB 15 2310 0.2469  0.5356
Switching method 15 2310 0.1330 0.7303

imaging algorithm performance with a reduced number of
antennas and visibilities compared to the full array, thereby
reducing computational burden.

V. CONCLUSIONS

This paper presents an application of the EM algorithm
to the radio interferometric imaging problem, leveraging a
low-rank noise model to account for interference effects.
Additionally, we propose a switching strategy based on pre-
selected sub-arrays to reduce computational requirements for
image restoration. The simulations show that the low-rank
noise model outperforms the Gaussian noise model in the
presence of RFI and the proposed switching strategy yields
comparable imaging performance with fewer antennas and
visibilities compared to the full array. By leveraging low-rank
noise modeling and a novel switching strategy, we enhance
the robustness and efficiency of imaging algorithms, paving
the way for low-cost and high-quality imaging in large-scale
radio telescopes.
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SUPPLEMENTARY MATERIAL

A. Proof of Proposition 1

Proof. We will treat each parameter individually.

a) Determining o2: Based on the surrogate function (8),
the log-likelihood functlon of the complete data after the inner
expectation with respect to ~; can be reformulated as

1 m
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Then, inserting 4% into (26) and after some algebra, we obtain
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Then taking the outer expectation with respect to rg, the
surrogate function depending only on o2 becomes
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From this, we derive (12). For the details regarding the

computation of
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please refer to Part B: Conditional distribution of vy, given yy,.

b) Determining Wp: By denoting ¥ = r;, — Hyx, the

log-likelihood function of the complete data after the inner
expectation with respect to «y;, can be reformulated as
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—=(m) m ~(m) [ ~(m H
vy =B A (3) (32)

~ —m) .
Then, inserting 4, and 4~#, ~ into (31) and taking the
outer expectation with respect to ry, the surrogate function
depending only on Wy, becomes

g Erk|yk g(m)

From this, after some algebra, we derive (16).
That concludes the proof. O

W |9(m) ’Yk‘rk [L(Wklykarka'yk)]]

(33)

B. Conditional distribution of rj, given yj,
Given that ry, ~ CN (v, X) with

v = Hpx + Wy, vec(I) (34)
2 =0T+ W,WH (35)
we can deduce
M.ty ~ CN (Mv, M, ZMF)
Mty ~ CN(Myv, M =M (30)
Moreover, the covariance between Myry and Myry, is
cov(Mj,ry, Myry,) = MM, (37)
Thus, the joint distribution of y; and Myr;, is given by
()~ (Bi)- oo Semt])

where Y = Mkrk. -
Consequently, the conditional distribution of Myrj given
Y is

Myri|yr ~ CN(Mgv + pi, Gy) (39
where
— -1
pe = My SMY (MkszH) er
(40)
J— _ J— —1 —
G, = M =M, — M, sM” (MkzM,’j) M, =M
Consider the matrix B;, defined as
M, 77T
By = MJ = M7 My (41)
which satisfies
7T7
BIB, = M{M; + M, M,, =1y, (42)
and then denoting €, = ry — v, we have
EXt,r,ly, [Brexek Bi]
e erell  euellM, (43)
Merlys | M epell  Myrpel/ M,
where e = MkEk =Yr — MkV.
Thus, after some algebra, we have
H
Eﬁkrk\yk [ekek ]
BTIEMMW [Brerel BL| By,
_ 71 |erel eppl! M (44)
_ [Mg Mﬂ k ]fq kM " M
mrey  Gg+prpy | | Mg
7H JR—
= &€ + M, G M,
with oy
& = Mi'ej, + My, puy, (45)
Inserting pi and after further simplification, we have
& = SMY (MM ey (46)
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