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Abstract: In this study, the time-varying formation control problem for the second-order discrete-time multi-agent systems is
investigated, where both the non-uniform communication time-delays and switching topology are taken into account. A linear
discrete-time formation protocol is developed based on the neighbouring relative position and velocity information. Using the
state transformation method and properties of the stochastic matrix, the formation feasibility condition is given and sufficient
conditions for the discrete-time multi-agent systems to accomplish the time-varying formation are established. An unmanned
aerial vehicles (UAVs) formation experiment platform is constructed. Using four quadrotor UAVs, UAV formation flying
experiments are performed to verify the effectiveness and reliability of the discrete-time formation protocol. The experimental
results show that the theoretical results can be used to deal with the time-varying formation control problem for multiple UAVs
system with communication delays and switching topology.

1 Introduction
Formation control research, which is an important branch of the
coordination control of multi-agent systems, has attracted
widespread attention in the past few years [1]. Through the
cooperation among multiple agents, multi-agent systems possess
more powerful capabilities and can perform more complex tasks
than multiple single-agents. Formation control technology has
great application potential in many fields, such as target
localisation [2], target enclosing [3], nuclear radiation detecting
[4], and synchronous motion of unmanned aircrafts [5].

Formation control problems for multi-agent systems with first-
order [6–8], second-order [9–12], and high-order [13] dynamics
have been extensively studied. However, these researches focus on
the fixed formation problem. In practical applications, it is very
useful that the formation shape or the relative positions of agents
can be time-varying. For instance, when the multi-agent systems
need to achieve greater coverage or to avoid the obstacles, the
positions and velocities of the agents need to be dynamically
adjusted. Thus, the research on time-varying formation control
problem of multi-agent systems is more significant. The time-
varying formation problem for first-order multi-agent systems is
investigated in [14], where a distributed observer-based protocol is
designed. The time-varying formation control problem for multi-
agent systems with first-order and second-order heterogeneous
dynamics is investigated in [15], where a Lyapunov approach
based on back-stepping method is developed for the
synchronisation between first-order agents and second-order
agents. In [16], a time-varying formation control problem for
second-order multi-agent systems is investigated, where necessary
and sufficient conditions for the realisation of the formation are
given based on the formation feasibility constraints. A fast terminal
sliding mode control is developed in [17] for second-order multi-
agent systems to realise the desired time-varying formation in the
finite time. In [18], a general time-varying formation control
approach that does not depend on initial agents' states is introduced
for multi-agent systems with non-linear dynamics. Time-varying
formation control problem for high-order linear multi-agent
systems under directed topology is addressed in [19], where an

adaptive control protocol that only uses the relative states among
agents is developed. A layered distributed finite-time estimator is
developed in [20] to deal with the formation control problem. A
time-varying formation control protocol based on event-triggered
scheme is proposed in [21] for high-order multi-agent systems.

The above researches focus on the realisation of the time-
varying formation under ideal conditions. However, time-varying
formation control problems of multi-agent systems with
communication delays, topology switching, or external disturbance
are more common in practical applications. A time-varying
formation control method for second-order multi-agent systems is
developed in [22], where the non-uniform time-varying
transmission delays are taken into account. Fully distributed
protocols are developed in [23] for second-order multi-agent
systems with communication delays to achieve a formation, where
the maximum allowable delay is given. A time-delayed formation
protocol that uses only the relative agents' position information is
constructed in [24] to deal with the formation control problem of
second-order multi-agent systems. Sufficient conditions for
second-order multi-agent systems with time-varying transmission
delays to complete a formation are given in [25], where both the
upper and lower bounds of the variation rate of delay are
considered. The time-varying formation control problem for multi-
agent systems with second-order dynamics is investigated in [26],
where two kinds of time delays, one affecting the velocity and the
other affecting the position are taken into consideration. A
formation tracking controller that uses both real-time and delay
state information is developed in [27] for non-linear multi-agent
systems. In [28], an identifier-based control protocol is proposed
for second-order multi-agent systems with disturbances and model
uncertainties to achieve the time-varying formation. In [29], the
formation control problem that considers both the time-varying
communication delays and stochastic changing topology for multi-
agent systems with non-linear dynamics is investigated.

The aforementioned formation control problems are based on
continuous-time model, where the agent states are assumed to be
continuous. However, with the development and application of
microcomputers, more and more digital systems and digital
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controllers are employed in engineering field. In this case,
continuous information cannot be processed directly. Therefore, it
is more interesting to study the time-varying formation control
problem based on the discrete-time model and to design the
discretised formation controller [30, 31]. The time-varying
formation control problems for discrete-time multi-agent systems
with communication delays [32–36] and switching topology [37–
41] are investigated extensively. In [35], a Katz-centrality-based
protocol is developed for the formation problem of second-order
discrete-time multi-agent systems with time-varying transmission
delay. In [36], heterogeneous time delays in the formation control
problem for high-order discrete-time multi-agent systems are taken
into account. In [40], the robust formation control problem for non-
linear discrete-time multi-agent systems with the switching
topology and the initial formation error is presented. In [41], a
time-varying formation for discrete-time multi-agent systems with
non-linear dynamics is completed based on an iterative learning
approach. The time-varying formation control problems
considering multiple constraints for discrete-time multi-agent
systems are investigated in [42–47]. An iterative learning control
approach for the formation problem of general discrete-time multi-
agent systems with transmission delays is presented in [44], where
the stochastic disturbance and structure uncertainties are
considered. A non-linear projection-based approach is developed in
[45] for the formation control problem of single-integrator discrete-
time multi-agent systems with switching topology and
communication delays. A distributed observer is constructed to
deal with the formation problem of time-delayed discrete-time
multi-agent systems with the connected changing topology in [46].
Sufficient conditions for heterogeneous discrete-time multi-agent
systems with non-linear dynamics and structural uncertainties to
realise a time-varying formation are given in [47].

Most of the above researches only perform theoretical analysis
and numerical simulation. Only a few papers [14, 16, 47–50] give
the experimental verification. In [14], an experiment with five
wheeled mobile robots is applied to verify the observer-based
formation control protocol. In [16], a formation flight experiment
with five unmanned aerial vehicles (UAVs) is conducted to
demonstrate the effectiveness of the time-varying formation
protocol. In [47], the proposed formation controller for
heterogeneous discrete-time multi-agent systems is applied on a
multiple robot system with four Arduino FPV Robots. In [48], the
formation protocol for second-order multi-agent systems with the
switching topology is applied on a multiple UAVs system with four
UAVs. In [49], experiments with six nano-quadrotors are
performed to verify the theoretical results. To the best of our
knowledge, the time-varying formation control problem for
second-order discrete-time multi-agent systems with non-uniform
communication time-delays and the switching topology is still
open and there is no corresponding experimental application on
UAVs.

Time-varying formation control technology of multi-agent
system has many potential application scenarios, such as
environmental management, disaster management [51] and post-
disaster assessment [52]. A single UAV has the shortcomings of
small detection area, short cruising range and low operating
efficiency. In contrast, multiple UAVs formation can achieve
greater coverage and improve operational efficiency. For example,

after an earthquake or debris flow, multi-UAV formation can
quickly and efficiently survey the situation of the disaster site,
assess the severity of the disaster, and improve the efficiency of
subsequent rescue work. Fig. 1 shows the scenario of utilising
multiple UAV formation to survey the disaster situation after a
landslide. 

This paper investigates the time-varying formation control
problem with non-uniform communication delays and switching
topology for second-order discrete-time multi-agent systems. A
discrete-time formation control protocol using relative
neighbouring agents' states is proposed. By decomposing the
closed-loop system, the formation feasibility condition based on
the formation vector is established. Moreover, using the state
transformation method and properties of the stochastic matrix,
sufficient conditions for second-order discrete-time multi-agent
systems to achieve the time-varying formation with communication
delays and switching topology are given. A simulation is shown to
demonstrate the effectiveness of the formation protocol. In order to
demonstrate the application of the proposed formation protocol on
multiple UAVs system, two UAV flying experiments are
conducted. In the first experiment, only switching topology is
considered; in the second experiment, both the switching topology
and non-uniform communication delays are considered. The
analyses of the experimental results are also given.

Compared with the previous research of time-varying formation
control. The contributions of this paper are threefold. First, both the
time-varying communication delays and topology variation are
taken into account, where the communication delays can be non-
uniform. In [37, 38, 40, 41], only the switching topology is
considered and in [24, 27, 32, 33], only the uniformed or fixed
communication delays is taken into consideration. Second, the
structure of multi-agent systems and control protocol are
constructed based on discrete-time model. These theoretical results
can be directly applied to solve the time-varying formation control
problem of discrete-time multi-agent systems. With the application
of digital systems and digital controllers, discretised formation
control protocols are easy to be implemented and can effectively
reduce the communication consumption. However, the researches
on formation control of multi-agent systems in [17–19, 22–27] are
based on continuous-time model and the results cannot be directly
applied on the digital controllers. Third, the proposed formation
protocol can be used to deal with the time-varying formation
control problem of multiple UAVs system. Using four quadrotor
UAVs, two experiments are given to verify the effectiveness and
reliability of the proposed formation protocol. In [6–13, 22–29],
and [32, 33, 35, 44, 53], the proposed formation protocols are only
verified by numerical simulations.

The remaining of this paper is organised as follows.
Preliminaries of graph and matrix theory are presented and the
time-varying formation problem is defined in Section 2. A linear
time-varying discrete-time formation protocol is given and a
theorem that ensures the realisation of formation is proven in
Section 3. Numerical simulation is given in Section 4 to verify the
effectiveness of the proposed protocol. In Section 5, a UAV
formation platform is introduced, the experiments with four UAVs
are performed, and the analyses of experimental results are given.
Conclusions are drawn in Section 6.

The following notations are applied in this paper for simplicity.
ℝM × N represents the set of real matrices with M rows and N
columns. 1 represents a vector [1, 1, …, 1]T with an appropriate
dimension. ⊗ is the Kronecker product. ∥ ⋅ ∥2 indicates the
Euclidean norm.

2 Preliminaries and problem description
2.1 Basic properties of graph theory

Let G = (V, ℰ, A) denote a weighted directed graph of N nodes
with the set of nodes V = {v1, v2, …, vN}, the set of edges
ℰ = {ℰi j = (vi, vj), ℰ ⊆ V × V}, and a weighted adjacency matrix
A = (ai j)N × N. The weighted elements ai j are non-negative and it is
assumed that aii = 0, ∀i ∈ {1, 2, …, N}. A graph G is called
undirected if ai j = aji, ∀i, j ∈ {1, 2, …, N}.

Fig. 1  Post-disaster assessment by multiple UAVs formation
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N j = {vj ∈ V, ℰ ji = (vj, vi) ∈ ℰ} represents the set of neighbour
of node vj. If there exists a series of edges (vi, vi1), (vi1, vi2), …, (vil, vj)
with vik (k = 1, 2, …, l) different nodes of the graph, then it called
that there exists a directed path between nodes vi and vj. A directed
graph G is said to contain a directed spanning tree if there exists at
least one node that has directed paths to all the other nodes. The in-
degree matrix W is defined as
W = diag(degin(v1), degin(v2), …, degin(vN)), where the in-degree of
node vi is degin(vi) = ∑ j = 1, j ≠ i

N ai j. The Laplacian matrix L of
graph G is defined as L = W − A. For a directed graph G, 0 is an
eigenvalue of Laplacian matrix L and 1 is the associated right
eigenvector, i.e. L1 = 0.

The topology considered in this paper is dynamically changing.
The topology of the graph G at time k is denoted by G(k). Let
ΩN = {G(k), k ∈ ℤ+} be the set of all the possible topologies of
graph G. Let Ni(k) represent the set of neighbour of node i at time
k. Let L(k) = (li j(k))N × N denote the Laplacian matrix of the graph
corresponding to the topology G(k). For all possible L(k), let dmax
be the largest diagonal entry of L(k). The communication delay
among the agents is described by τi j ∈ ℝ, i ≠ j, which represents
the time-delay from agent j to i. Assume that the communication
delays are bounded, namely, τi j ≤ τmax, where τmax is the maximal
delay.
 

Lemma 1: Consider a square matrix M = (mi j)n × n ∈ ℝn × n,

(i) M is called a stochastic matrix if all the elements of M are non-
negative and for ∀i ∈ {1, 2, …, n}, ∑ j = 1

n mi j = 1.
(ii) If M is a stochastic matrix and there exists a constant vector
c ∈ ℝn such that ∏ j = 1

+∞ M j = 1cT, then M is called stochastic
indecomposable and aperiodic (SIA) matrix [54].

2.2 Definition of time-varying formation

Consider a discrete-time multi-agent system with N agents. The
dynamic equation of agent i is modelled as

pi((k + 1)T) = pi(kT) + Tvi(kT)
vi((k + 1)T) = vi(kT) + Tui(kT) (1)

where k ∈ ℤ+, T ∈ ℝ is the sample period, and ui(kT) ∈ ℝn is the
control input of agent i at time kT. pi(kT) ∈ ℝn and vi(kT) ∈ ℝn are
the position and velocity of agent i at time kT, respectively.

In the following, let n = 1 for the sake of simplicity in the
description. However, using Kronecker product, all the results
hereafter can be directly extended to the higher dimensional cases.

Denote xi(kT) = [pi(kT), vi(kT)]T ∈ ℝ2 and replace kT by k for
simplicity. Then multi-agent system (1) can be transformed to

xi(k + 1) = Axi(k) + Bui(k) (2)

where i = 1, 2, …, N and

A = 1 T
0 1 , B = 0

T

 
Remark 1: Multi-agent system (2) is a discrete state space

representation of a double integrator system. Most UAVs and
unmanned ground vehicles (UGVs) can be modelled as a double
integrator system after linearisation [48].

 
Definition 1: The multi-agent system (2) realises consensus if

there exists a f R(k) ∈ ℝ2 such that the following equation is
satisfied:

lim
k → + ∞ (xi(k) − f R(k)) = 0 ∀i = 1, 2, …, N (3)

where f R(k) is a vector-valued function and is defined as the
consensus reference function.

Denote x(k) = [x1(k)T, x2(k)T, …, xN(k)T]T, and let
h(k) = [h1(k)T, h2(k)T, …, hN(k)T]T be the desired formation vector
for system (2), where hi(k) = [hip(k), hiv(k)]T ∈ ℝ2 is the formation
vector for agent i.
 

Definition 2: The multi-agent system (2) realises the time-
varying formation h(k) if there exists a hR(k) ∈ ℝ2 such that the
following condition is met:

lim
k → + ∞ (xi(k) − hi(k) − hR(k)) = 0 ∀i = 1, 2, …, N (4)

where hR(k) is a vector-valued function and is defined as the
formation reference function.
 

Remark 2: According to Definitions 1 and 2, one can obtain that
if hi(k) ≡ 0, realisations of consensus and time-varying formation
hi(k) for the multi-agent system (2) are equivalent. In this case, the
consensus reference function f R(k) and formation reference
function hR(k) are the same. More generally, the consensus problem
can be considered as a particular case of the time-varying
formation problem to be dealt with.

3 Time-varying formation protocol
For multi-agent system (2) with non-uniform communication
delays and switching topology, in order to achieve the formation
defined by vector h(k), the following discrete-time control protocol
is proposed:

ui(k) = K1(xi(k) − hi(k)) + hia(k)
+K2 ∑

j ∈ Ni(k)
ai j(k)(xj(kτ) − hj(kτ) − xi(k) + hi(k)) (5)

where i = 1, 2, …, N, kτ = k − τi j,

hia(k) = (hiv(k + 1) − hiv(k))/T (6)

K1 = [k̄11, k̄12] ∈ ℝ1 × 2 and K2 = [k̄21, k̄22] ∈ ℝ1 × 2 are two control
parameter matrices.

Under the protocol (5), the multi-agent system (2) can be
described as follows:

xi(k + 1) = (A + BK1)xi(k) + B(hia(k) − K1hi(k))
+BK2 ∑

j ∈ Ni(k)
ai j(k)(xj(kτ) − hj(kτ) − xi(k) + hi(k)) (7)

Let εi(k) = xi(k) − hi(k) = [εip(k), εiv(k)]T, then (7) is
transformed to

εi(k + 1) = (A + BK1)εi(k)
+BK2 ∑

j ∈ Ni(k)
ai j(k)(εj(kτ) − εi(k))

+Ahi(k) + Bhia(k) − hi(k + 1)

(8)

Define the following subsystem for each agent i,

εi(k + 1) = (A + BK1)εi(k)
+BK2 ∑

j ∈ Ni(k)
ai j(k)(εj(kτ) − εi(k)) (9)

and the following lemma can be obtained directly.
 
Lemma 2: For each agent i, the closed-loop system (8) is stable

if Ahi(k) + Bhia(k) − hi(k + 1) = 0 and the subsystem (9) is stable.
Since only components of the formation vector

hi(k) = [hip(k), hiv(k)]T are involved in
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Ahi(k) + Bhia(k) − hi(k + 1) = 0, it is called a formation feasibility
condition. Considering the forms of matrices A, B, and (6), the
following more compact formation feasibility condition can be
obtained:

hip(k + 1) = hip(k) + Thiv(k), i = 1, 2, …, N (10)

 
Remark 3: The formation feasibility condition gives the

condition for judging whether the desired formation hi(k) is
applicable.

Denote ε(k) = [ε1(k)T, ε2(k)T, …, εN(k)T]T. Assume that the
formation feasibility condition is met, then from (9), one can get
that

ε(k + 1) = Ξ(k)ε(k) + (Υ0(k) ⊗ BK2)ε(k)
+(Υ1(k) ⊗ BK2)ε(k − 1) + ⋯
+(Υτmax(k) ⊗ BK2)ε(k − τmax)

(11)

where Ξ(k) = IN ⊗ (A + BK1) − Ld(k) ⊗ BK2, Ld(k) is a diagonal
matrix consisting of diagonal elements of Laplacian matrix L(k),
namely, Ld(k) = diag(l11(k), l22(k), …, lNN(k)). Besides,
m = 0, 1, …, τmax, Υm(k) ∈ ℝN × N. The (i,j) entry of Υm(k) is ai j if
m = τi j, is zero if not. Υm(k) represents a topological weight matrix
between the agents with communication delays m. In addition,
according to the definition of L(k), L(k) = Ld(k) − ∑m = 0

τmax Υm(k)
can be obtained.

Then the following more compact equation can be obtained:

ε(k + 1) = Ξ(k)ε(k) + ∑
m = 0

τmax

(Υm(k) ⊗ BK2)ε(k − m) (12)

Let ε̄i(k) = [εip(k), εip(k) + RKεiv(k)]T, where RK = k̄22/ k̄21.
Denote ε̄(k) = [ε̄1(k)T, ε̄2(k)T, …, ε̄N(k)T]T, one has that
ε̄(k) = (IN ⊗ P)ε(k), where

P =
1 0
1 RK

, P−1 =
1 0

− 1
RK

1
RK

Equation (12) can be converted to

ε̄(k + 1) = Ξ̄(k)ε̄(k) + ∑
m = 0

τmax

(Υm(k) ⊗ B̄)ε̄(k − m) (13)

where Ξ̄(k) = (IN ⊗ Ā − Ld(k) ⊗ B̄), Ā = P(A + BK1)P−1

Ā =
1 − T

RK

T
RK

k̄11TRK − (1 + k̄12RK) T
RK

1 + (1 + k̄12RK) T
RK

B̄ = PBK2P−1 =
0 0
0 k̄22T

Let η(k) = [ε̄(k)T, ε̄(k − 1)T, …, ε̄(k − τmax)T]T, then (13) can be
further converted to

η(k + 1) = Γ(k)η(k) (14)

with

Γ(k) =

Γ0(k) Γ1(k) ⋯ Γτmax − 1(k) Γτmax(k)
IN 0 ⋯ 0 0
0 IN ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ IN 0

where Γ0(k) = Ξ̄(k) + Υ0(k) ⊗ B̄ and for m = 1, 2, …, τmax,
Γm(k) = Υm(k) ⊗ B̄.

 
Lemma 3: The multi-agent system (2) realises the time-varying

formation defined by the formation vector h(k) if the system (14) is
asymptotically stable, namely, limk → + ∞ η(k) exists.

 
Proof: Since η(k) = [ε̄(k)T, ε̄(k − 1)T, …, ε̄(k − τmax)T]T, one has

that limk → + ∞ ε̄(k) exists if system (14) is asymptotically stable.
Furthermore, limk → + ∞ ε(k) exists since one has that

ε(k) = (IN ⊗ P−1)ε̄(k) with a non-singular matrix P.
Since ε(k) = x(k) − h(k), the existence of

limk → + ∞ (x(k) − h(k)) can be obtained, which means that the
multi-agent system (2) realises the time-varying formation defined
by formation vector h(k). The proof is completed. □

Two lemmas will be introduced to facilitate the proof of the
stability of system (14).
 

Lemma 4: If Γ(k) is a stochastic matrix, for a period of time
[k1, k2], k2 > k1, k1, k2 ∈ ℤ+, and the union of the graphs ⋃k = k1

k2 G(k)
has a spanning tree. Then ∏k = k1

k2 Γ(k) is a SIA matrix [55].
 

Lemma 5: Consider a finite set of SIA matrices
Ψ1, Ψ2, …, Ψm ∈ ℝn × n and for every series of matrices
Ψ j1, Ψ j2, …, Ψ ji with i > 1, the matrix product Ψ jiΨ ji − 1⋯Ψ j1 is a
SIA matrix. Then, for every infinite sequence Ψ j1, Ψ j2, …, a vector
c ∈ ℝn can be founded such that ∏i = 1

+∞ Ψ ji = 1cT [54].
 

Theorem 1: The multi-agent system (2) with protocol (5) can
accomplish the time-varying formation h(k) if the following
conditions are satisfied simultaneously:

(i) 1 + (1 + k̄12RK)(T /RK) > dmaxk̄22T , T < RK, and 1 + k̄12RK < 0
with k̄21 > 0, k̄22 > 0, k̄12 < 0, k̄11 = 0.
(ii) There exists an infinite serie of time k0 = 0, k1, k2, … and for
m, μ ∈ ℤ+, 0 < km + 1 − km ≤ μ, the union of graph ⋃k = km

km + 1 − 1 G(k)
has a spanning tree.

 
Proof: If the formation feasibility condition is satisfied, the

multi-agent system (2) with protocol (5) can be transformed to
system (14). From conditions i), one can get that all the entries of Ā
are non-negative, and row sum of Ā is 1, so Ā is a stochastic
matrix.

Since L(k) = Ld(k) − ∑m = 0
τmax Υm(k) and L1 = 0, one can get that

Γ(k)1 = 1. Furthermore, from the definition of Γ(k), it is clear that
all the entries of Γ(k) are non-negative. Thus, Γ(k) is a stochastic
matrix.

Denote mk ∈ ℤ+ the largest integer such that kmk ≤ k for every
k ≥ 0. Let Θ(m) = Γ(km + 1 − 1)Γ(km + 1 − 2)⋯Γ(km), then,

η(k + 1) = Γ(k)⋯Γ(kmk) ∏
m = 0

mk − 1
Θ(m)η(0)

Since m, μ ∈ ℤ+, 0 < km + 1 − km ≤ μ, the union of graph
⋃k = km

km + 1 − 1 G(k) has a spanning tree, according to Lemma 4, Θ(m) is
an SIA matrix. In addition, for an integer j, the union of graph
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⋃i = km

km + j − 1 G(i) has a spanning tree, thus ∏s = m
m + j + 1 Θ(s) is an SIA

matrix.
All the possible topologies G(k) form a finite set ΩN, then all

the ai j(k) belong to a finite set. Moreover, 0 < km + 1 − km ≤ μ, thus
one can obtain that all the possible Θ( j) also form a finite set.
Hence, according to Lemma 5, there exists a constant vector
c ∈ ℝ2(τmax + 1)N such that

∏
i = 0

+∞
Θ(i) = 1cT

Thus, it follows that

lim
k → + ∞ η(k + 1) = lim

k → + ∞ (Γ(k)⋯Γ(kmk) ∏
m = 0

mk − 1
Θ(m)η(0))

= ∏
i = 0

+∞
Θ(i)η(0)

= 1cTη(0)

(15)

Then one can obtain that limk → + ∞ ε̄(k) = 1cTη(0), and it
follows that
limk → + ∞ (x(k) − h(k)) = limk → + ∞ ε(k) = (IN ⊗ P−1)1cTη(0). It
means that the time-varying formation is realised. The proof is
completed. □
 

Remark 4: The existence of communication delays and
switching topologies will slow the convergence rate of the closed-
loop system. More specifically, the greater the communication
delay, the slower the system converges. When the communication
delay between the two agents is large enough, it can be considered
that there can be no information exchange between the two agents.
In this case, the topology of the system has changed from the
perspective of the whole multi-agent system. From the proof of

Theorem 1, one can see that the time-varying formation can be also
achieved if the communication delays among agents are uniform or
even reduced to zero. In addition, when the topology is fixed, the
time-varying formation can be realised if the topology has a
spanning tree.
 

Theorem 2: If the multi-agent system (1) realises the time-
varying formation h(k), then the formation reference function hR(k)
satisfies that

lim
k → + ∞ hR(k) = (IN ⊗ P−1)1cTη(0) (16)

where η(0) = 1 ⊗ [(IN ⊗ P)(x(0) − h(0))].
 

Proof: From the proof of Theorem 1, one obtains that
limk → + ∞ η(k + 1) = 1cTη(0). In addition,
η(0) = [ε̄(0)T, ε̄( − 1)T, …, ε̄( − τmax)T]T. Assume that
ε̄(k ≤ 0) = ε̄(0), then the following initial equation can be obtained:

η(0) = 1 ⊗ ε̄(0) = 1 ⊗ [(IN ⊗ P)(x(0) − h(0))] (17)

According to Definition 2, one has that

lim
k → + ∞ hR(k) = lim

k → + ∞ (xi(k) − hi(k)) (18)

From the proof of Theorem 1, one can obtain that

lim
k → + ∞ (x(k) − h(k)) = (IN ⊗ P−1)1cTη(0) (19)

Combining (17), (18), and (19), the formation reference
equation (16) can be obtained. The proof is completed. □
 

Remark 5: The formation reference function determines the
trajectory of the formation centre. According to Theorem 2, one
can see that the formation reference function hR(k) depends on the
initial states of x(k) and h(k).

According to Theorem 1, a feasible procedure to construct the
time-varying formation protocol is given in Algorithm 1 (see Fig.
2). 

4 Simulation
In this section, a discrete-time multi-agent system that includes
four agents moving in the X–Y plane is considered. The position
and velocity of the agents in the X and Y directions are both taken
into account. The state of each agent is defined as
xi(k) = [pix(k), vix(k), piy(k), viy(k)]T, i ∈ {1, 2, 3, 4}.

The sample time T is 0.05 s. In this simulation, both the
switching topology and non-uniform time-delay constraints are
taken into account. Fig. 3 indicates a set of four possible interaction
topologies and the corresponding topology at different times are
shown in Fig. 4. The time-delays among the four agents are
selected as

τ12 = τ21 = τ23 = τ32 = T
τ13 = τ31 = τ34 = τ43 = 2 T
τ14 = τ41 = τ13 = τ31 = 3 T

The following formation error function Δ f (k) is defined to
measure the achievement of the time-varying formation

Δ f (k) = ∥ x(k) − h(k) ∥2 (20)

According to Theorem 1, the parameters in protocol (5) are
selected as k̄11 = − 5, k̄12 = − 1, k̄21 = 0.2, and k̄22 = 0.4. The
expected time-varying formation is a circular motion, where
r = 1 m, ω = 3.14 rad/s, and the phase difference among four
agents is π /2. The corresponding formation vector is as follows:

Fig. 2  Algorithm 1: Procedure to construct the time-varying formation
protocol

 

Fig. 3  Set of four possible topologies
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hi(k) =

rcos(ωk + (i − 1)π /2)
−ωrsin(ωk + (i − 1)π /2)

rsin(ωk + (i − 1)π /2)
ωrcos(ωk + (i − 1)π /2)

, i ∈ {1, 2, 3, 4}

It can be verified that the formation vector hi(k) satisfies the
formation feasibility conditions.

The initial states of the four agents are set to

x1(0) = [0.8 m, − 0.1 m/s, − 0.4 m, 0.5 m/s]T

x2(0) = [ − 0.7 m, 0 m/s, 0.7 m, − 0.1 m/s]T

x3(0) = [ − 0.5 m, 0.5 m/s, − 0.8 m, 0 m/s]T

x4(0) = [0.6 m, 0.1 m/s, − 0.7 m, 0.2 m/s]T

Fig. 5 shows the positions of the four agents in the X–Y plane
within 40 s, where the initial positions of agents are represented by
round markers and their positions at 40 s are noted by hexagon
markers. Taking agent 1 as an example, the velocities and control
inputs of agent 1 in the directions X and Y are indicated in Figs. 6
and 7, respectively. The formation error Δ f (k) is shown in Fig. 8. 

According to the positions of four hexagon markers in Fig. 5,
the four agents reach exactly on the circumference of the circle
with r = 1 m at 40 s. One can see that the desired circular
formation with r = 1 m among the four agents is accomplished.
From Fig. 6, one can obtain that the formation speed of four agents
is about 3.1 m/s, which is consistent with the desired formation
speed calculated by the formula v = ωr, where ω = 3.14 rad/s and
r = 1 m. Taking the control inputs of agent 1 in Fig. 7 as an
example, it can be seen that both the control inputs in the directions
X and Y are sine wave with a period 2 s and an amplitude 9.85 m/s2.
In addition, the formation error Δ f (k) in Fig. 8 decreases rapidly at
the beginning and converges to zeros asymptotically, which means
that the desired time-varying formation is achieved.

5 Application to formation control of UAVs
In this section, the proposed time-varying formation protocol is
applied to deal with the formation control problem of multiple
UAVs system. Two types of experiments are performed, which
include one experiment with the switching topology and the other
experiment with the switching topology and non-uniform time-
delays. First, the UAV formation platform used in the experiment is
introduced. Second, quadrotor UAV dynamics models and
formation control models are established. Third, the configurations
of the experiments are given and the analyses of experimental
results are shown. The two experimental videos can be found at
https://www.bilibili.com/video/av88058644 or https://youtu.be/
GytboIQjqDg.

5.1 Formation platform

The UAV formation platform, includes four parts: indoor
positioning system, quadrotor UAVs, router and ground station
centre (GSC). The global structure of the formation platform is
shown in Fig. 9. The indoor positioning system that includes 12
high precision cameras can measure the positions and velocities of
UAVs. The position measurement accuracy of the positioning
system is 0.5 mm. The information transmission among the UAVs
is achieved by a gigabit router. The wingspan and weight of the
quadrotor UAV are 250 mm and 132 g, respectively. The maximum
flight time of the quadrotor is about 10 min. Each quadrotor is
equipped with a Raspberry Pi 3B+ (RP3) and a flight controller
system (FCS). A three-axis digital gyroscope, a six-axis
accelerometer, a magnetometer and a precision barometer are
embedded in the FCS to obtain the attitudes, accelerations, and the
heights of the quadrotors. The RP3 is used to analyse the GSC's
control commands and generate the desired attitude information.
The FCS is used to control the quadrotor to achieve the desired
attitude. The GSC based on matlab are used to send takeoff and
landing instructions to the quadrotors. During the formation, the
quadrotors do not need to receive the control command of the

Fig. 4  Corresponding topology number at different time
 

Fig. 5  Position trajectories of four agents within 40 s in the simulation
 

Fig. 6  Velocity v(k) of agent 1 within 40 s in the simulation
 

Fig. 7  Control input u(k) of agent 1 within 40 s in the simulation
 

Fig. 8  Formation error Δ f (k) within 40 s in the simulation
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GSC. Each quadrotor is directly controlled by the on-board RP3,
which can communicate with each other via the router. The control
rate of RP3 is 20 hZ and the indoor positioning system sends the
state information of each quadrotor to the GSC every 0.05 s. The
fly data is saved in the matlab workspace by GSC, which can be
analysed after the experiments. However, in order to deal with the
emergencies, each quadrotor is equipped with a remote control
receiver (RC receiver). In any emergency cases, the pilot can
manually control the quadrotor via the remote control. Fig. 10
demonstrates the quadrotor UAVs and remote control used in the
experiments. More detailed information about the numbers and key
features of the main components of the UAV formation platform
can be found in Table 1. 

5.2 Quadrotor UAV modelling

During the modelling of the quadrotor UAV, two dynamics,
namely, attitude dynamics and trajectory dynamics are established.
The control constants of attitude dynamics are much smaller than

the ones of trajectory dynamics [56], which means that the stability
of the attitude control can be reached much faster than that of the
trajectory control. Then, the attitude control loop and trajectory
control loop of quadrotor can be decoupled and they are called
inner-loop control and outer-loop control, respectively. In our UAV
formation platform, the attitude controller and trajectory controller
are on the RP3 and FCS, respectively. Fig. 11 shows the details of
two loops control scheme for the multiple UAVs system. 

The formation problem discussed in this paper is mainly related
to the positions and velocities of the quadrotor UAV, which means
that the formation controller acts on the outer-loop in the two-loops
control scheme. In this configuration, the trajectory dynamics of
the quadrotor UAV can be modelled as a second-order system [57,
58], which can be discretised as (1). Then the discrete-time-varying
formation protocol proposed in this paper can be applied to the
formation control problem of multiple UAVs system.

5.3 Experiment configuration

The multiple UAVs system in the experiment consists of four
quadrotor UAVs moving in the horizontal plane. The height and
yaw angle of each UAV are controlled to be fixed values 1.2 m and
0°, respectively. The control of UAV in the X and Y directions is
decoupled, namely, the controllers in the two directions can be
designed separately. Considering the symmetric structure of the
quadrotor UAV in this experiment, the controller coefficients in the
X and Y directions are set to be the same.

A PD controller is used in the height control with 0.5 and 0.2 as
the coefficients of proportional and derivative terms, respectively.
A proportional controller with the coefficient 0.9 is used in the yaw
angle control. Control protocol (5) is used for trajectory control in
the directions X and Y. The position and velocity information of the
UAVs in the directions X and Y are both taken into consideration.
Using Kronecker product to combine the states of UAV in the X
and Y directions, denote xi(k) = [pix(k), vix(k), piy(k), viy(k)]T,
i ∈ {1, 2, 3, 4}, where pix(k) and vix(k) are the position and velocity

Fig. 9  Structure of UAV formation platform
 

Fig. 10  Quadrotor UAVs and remote controls used in the experiments
 

Table 1 Main components used in the UAV formation
platform
Components Numbers Key features
indoor positioning
system

Optitrack Prime13 number of camera: 12;
range: 12 m;

resolution: 0.1–1 mm
flight control PX4
frame QAV 250 diameter: 250 mm; weight:

132 g
electronic speed
controller

HOBBYWING 20A rated current: 20 A;
weight: 19 g;

refresh rate: 50–432 Hz
motor MT2204 KV: 2300 RPM/V; weight:

27 g;
diameter: 27.9 mm

propeller 5045 V3 diameter: 5 inch; thread
pitch: 4.5 inch

battery 2200 mAh-25C
11.1V-3S1P

voltage: 3S/11.1 V;
capacity: 2200 mAh;

weight: 184 g.
 

Fig. 11  Two-loops control scheme for the multiple UAVs system
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of UAV i in the direction X, respectively; piy(k) and viy(k) are the
position and velocity of UAV i in the direction Y, respectively.

Choose the same setting as in simulation. The parameters in
protocol (5) are selected as k̄11 = − 5, k̄12 = − 1, k̄21 = 0.2, and
k̄22 = 0.4. The expected time-varying formation of the multiple
UAVs system is a circular motion, where r = 1 m, ω = 3.14 rad/s,
and the phase difference among four UAVs is π /2. The sample time
T in the experiment is 0.05 s. The topology switching settings are
the same as in the simulation. The four possible topologies and the
corresponding topology at different times are shown in Figs. 3 and
4, respectively.

The state information of the four UAVs is transmitted via the
WIFI-router from the indoor positioning system to the onboard
RP3. Testing by ping command during the experiment, one can
observe that the time-delay between the indoor positioning system
and RP3 is around 5 ms. Considering that the additional time-
delays among the UAVs are between 50 and 150 ms, the time-delay
between the indoor positioning system and RP3 is negligible in

comparison with the additional time-delays among the UAVs.
Therefore, we assume that the additional time-delays are the only
time-delay in the multiple UAVs system.

Two experiments are introduced next. In experiment 1, only the
switching topology constraint is considered. In experiment 2, both
the switching topology and non-uniform time-delay constraints are
taken into consideration.

5.3.1 Experiment 1: In this experiment, only the communication
topology is switching. In order to avoid collisions when the
quadrotor UAVs start to realise the formation, the initial states of
four UAVs are selected near the formation trajectory. The initial
positions and velocities of the four UAVs are chosen as

x1(0) = [ − 0.18 m, 0.89 m/s, − 1.26 m, 0.39 m/s]T

x2(0) = [0.79 m, 0.17 m/s, − 0.30 m, 0.41 m/s]T

x3(0) = [0.12 m, − 0.73 m/s, 1.15 m, − 0.33 m/s]T

x4(0) = [ − 0.90 m, 0.04 m/s, − 0.06 m, 0.70 m/s]T

Fig. 12 shows the positions of the four UAVs in the X–Y plane
within 40 s, where the initial positions of UAVs are represented by
round markers and their positions at 40 s are noted by the hexagon
markers. The velocities and control inputs of UAV 1 in the
directions X and Y are indicated in Figs. 13 and 14, respectively. 
The velocities and control inputs of the other 3 UAVs are similar to
those of UAV 1. The formation error Δ f (k) is shown in Fig. 15. 

From the position trajectories of four UAVs in Fig. 12, one can
obtain that four UAVs achieve a circle formation with radius
r = 1 m. Taking the UAV 1 as an example, the velocities and
control inputs in two directions change periodically with an
amplitude 0.5 m/s and 0.8m/s2, respectively. In addition, from Fig.
15, one can see that the formation error Δ f (k) decreases rapidly at
the beginning of the experiment, and it oscillates around 0.4 after 5 
s. As a result, the four UAVs systems with the switching topology
form the desired circular time-varying formation.

5.3.2 Experiment 2: In this experiment, both the switching
topology and non-uniform communication time-delay are taken
into account. The time-delays among the four UAVs are the same
as in the simulation. The initial states of the four UAVs are set to

x1(0) = [0.83 m, 0.16 m/s, − 0.50 m, 1.00 m/s]T

x2(0) = [0.52 m, − 0.25 m/s, 0.73 m, 0.23 m/s]T

x3(0) = [ − 0.96 m, − 0.11 m/s, 0.70 m, − 0.77 m/s]T

x4(0) = [ − 0.57 m, 0.31 m/s, − 0.97 m, − 0.33 m/s]T

Fig. 16 shows the positions of the four UAVs in the X–Y plane
within 40 s, where the initial positions of UAVs are represented by
round markers and their positions at 40 s are noted by the hexagon
markers. The velocities and control inputs of UAV 1 in the
directions X and Y are indicated in Figs. 17 and 18, respectively. 
The velocities and control inputs of the other three UAVs are
similar to those of UAV 1. The formation error Δ f (k) is shown in
Fig. 19. 

From the position trajectories of four UAVs in Fig. 16, one can
obtain that four UAVs achieve a circle formation with radius r = 1
m. Taking the UAV 1 as an example, the velocities and control
inputs in two directions change periodically with amplitude 0.5 m/s
and 0.8 m/s2, respectively. In addition, from Fig. 19, one can see
that the formation error Δ f (k) decreases rapidly at the beginning of
the experiment, and it oscillates around 0.4 after 3 s. As a result,
the four UAVs systems with the switching topology and non-
uniform communication time-delay form the desired circular time-
varying formation (Fig. 20). 

6 Conclusion
Time-varying formation control problem for second-order discrete-
time multi-agent systems with communication delays and

Fig. 12  Position trajectories of four UAVs within 40 s in experiment 1
 

Fig. 13  Velocity v(k) of UAV 1 within 40 s in experiment 1
 

Fig. 14  Control input u(k) of UAV 1 within 40 s in experiment 1
 

Fig. 15  Formation error Δ f (k) within 40 s in experiment 1
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switching topology was studied in this paper, where the
communication delays were assumed to be time-varying and non-
uniform. Using the real-time and time-delayed agents' state
information, a discretised formation protocol was established. The
formation feasibility condition that considered the properties of the
desired formation vector was given. Through an approach of state
transformation, sufficient conditions for the realisation of the time-
varying formation of second-order discrete-time multi-agent
systems were presented. Simulation verified the stability of the
closed-loop system with the formation protocol. Based on a UAV
formation flight platform, two experiments with four quadrotor
UAVs were carried out. Experiment 1 showed that the desired
time-varying formation with switching topology can be realised
and Experiment 2 demonstrated that the additional non-uniform
communication delays with maximum 0.15 s had a very small
impact on the formation, which meant that the proposed protocol
was efficient on the formation control problem of UAVs.
Therefore, the proposed formation protocol can be applied to the
time-varying formation control problem of multiple UAVs system
with non-uniform communication delays and topology switching.
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