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In this paper, we consider the problem of antenna placement for radio interferometer arrays. In this type
of applications, signal-to-noise ratios (SNR) are typically low, and possibly lower than a SNR threshold under
which the estimation performance of source parameters may degrade significantly. In this regime, the Cramér—
Rao bound (CRB), which is often used for array design, is not a tight bound of the MSE. Therefore, we study
the use of a Barankin-type bound (BTB) as an alternative array design criterion. We assess and compare the
array geometries based on the CRB and the BTB in terms of MSE for a source’s DOA and intensity. We also
study how both geometries perform for imaging purposes. Specifically, the obtained results are assessed in
terms of uv-plane coverage (completeness of spatial frequency sampling), mainlobe width and sidelobe level
of the synthesized beam, as well as image reconstruction performance. Numerical experiments show that the
BTB-based design leads to better overall estimation performance over a fairly wide range of SNR and to an

enhanced array imaging capability, compared with a CRB-based approach.

1. Introduction

In recent decades, radio interferometer arrays have grown in size,
with many more antenna elements and much wider spatial spread. The
increased number of antennas improves resolution and sensitivity, as
is the case of modern instruments, such as LOFAR [1] or SKA [2,3].
Since their accuracy highly depends on the antenna locations, an-
tenna placement makes up a critical task in the design phase of the
instruments.

In radio interferometry, the data used to construct sky images
correspond to the signal correlations between each pair of antennas,
also referred to as visibilities. Due to the Fourier transform relationship
between the visibilities and the sky image [4], a fundamental character-
istic of radio interferometers is the sampling function of the visibilities
in the spatial frequency domain, generally referred to as uv-plane cov-
erage in radio astronomy. Each visibility is associated with a baseline
vector that connects the corresponding pair of antennas. The collection
of the array baseline vectors, projected on the plane orthogonal to
the reference direction (generally the center of the desired image),
forms the uv-plane coverage. Consequently, classical approaches for
radio interferometer design consist in placing antennas so as to obtain

a desired uv-plane sampling function, or equivalently a desired point-
spread function in the image domain (typically, with a narrow main
lobe and low sidelobes) [5,6].

The uv-plane coverage plays a key role when considering imaging
methods based on beamforming. If model-based, parametric techniques
such as maximum likelihood estimation are used [7], it seems more
appropriate to formulate array design criteria based on the statistical
performance of such methods, which is usually assessed in terms of
mean-squared error (MSE). Assessing the MSE of an estimator requires
numerous Monte-Carlo simulations, which can quickly become com-
putationally intensive, and sometimes unfeasible, as the number of
unknown parameters increases. This is especially burdensome if MSE
is to be used as the cost function to design a system. To overcome
this difficulty, lower bounds of the MSE can be used as performance
indicator, such as the Cramér-Rao bound (CRB). In addition these
bounds have the appealing property of being valid for a family of
estimators (namely, unbiased estimators in the case of the CRB, for
instance). In array processing, the CRB is commonly used as a design
criterion to solve the problem of optimal antenna placement [8,9],
due to its simplicity and existence of closed form. However, it is
well-known that the CRB is generally only asymptotically attained,
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i.e., for a large number of observations and/or high SNR. In nonlinear
estimation problems, a threshold SNR exists, under which the MSE sig-
nificantly deviates from the CRB. For low SNR, the CRB is consequently
not appropriate to describe estimation performance. Numerous other
bounds have been proposed in the literature, which can be used to
predict the SNR threshold (see e.g., [10,11] for an overview). Among
them, Barankin-type bounds (BTB), such as the Hammersley—-Chapman—
Robbins bound [12], offer a practical way for computing the original
Barankin bound [13]. These bounds have been extensively studied in
the literature, especially in the field of array processing (see [14-16],
for instance). To the best of our knowledge, BTBs have rarely been used
to solve an antenna selection problem at low SNR. In [17], the authors
used the Bobrovsky-Zakai bound, which can be seen as the Bayesian
counterpart of BTBs, in a context of cognitive antenna selection for
automotive radar.

Here, we investigate the antenna placement problem by seeking to
minimize MSE lower bounds on the parameters of a single source, such
as direction of arrival (DOA) and source power. We aim at studying to
which extent this relaxed model may lead to relevant array geometries
for imaging purposes in radio astronomy. Specifically, we compare
antenna placement approaches based on the minimization of the CRB
and the BTB, respectively. The performance of both approaches is
compared in terms of array beampattern (or dirty beam), baseline
diversity, and parameter estimation accuracy. It is shown that a BTB-
based design criterion is more suitable than a CRB-based criterion,
especially in the SNR transition regime.

The rest of the paper is organized as follows: Section 2 describes the
data model and provides some background on MSE lower bounds, Sec-
tion 3 formulates the optimization problem for antenna placement, and
Section 4 presents numerical results and analyses. Finally, conclusions
are drawn in Section 5.

2. Data model and associated error lower bounds
2.1. Model formulation

We consider an antenna array consisting of P antennas placed
on the Earth’s surface, whose location vectors are denoted by &, =
[xp,yp,zp]T, p = 1,...,P, in a local coordinate system where the x-
axis is oriented towards east of the reference observation point (chosen
as the origin), the y-axis is oriented towards north, and the z-axis
points at the zenith. We assume the presence of a single, narrowband,
far-field source signal s(7), that is zero-mean, complex Gaussian, with
an unknown variance denoted by S = E|s(¢)| that corresponds to
the source intensity. We are interested in recovering this source in-
tensity, as well as its DOA, which is described by a unit vector # =
[I,m,V/1—=12=m2]T, with / and m the direction cosines. The antennas
give rise to an independent, identically distributed (i.i.d.) additive
noise vector n(r) € CP that is assumed to be complex Gaussian with
covariance matrix ¢2I, and uncorrelated with the source signal s(7). In
these conditions, noting as y,(?) the signal received at the pth antenna,
the array signal vector y, = [y;(t,),...,yp(,)]" at sampling time 7,
n=0,...,N — 1, can be expressed as

Yo =a)s, +n,, @

ST Sj2g,T
where a(®) = [e375°7, 74P Y|T € CP denotes the array
response vector (the exponential function is applied element-wise),
E = [£,...,&p] is the 3 x P matrix stacking the antenna coordinates,
s, = s(t,) and n, = n(,). Given the assumptions made about the
source and noise signals, the array signal vector y, follows a zero-mean,
complex Gaussian distribution with covariance matrix

R(O) = Sa@®@)a(@) + 61, 2

where 6 = [I,m, S, 6] denotes the unknown parameter vector. The
likelihood function, for an observation Y = [yg,....yny_;] over N
independent samples, is given by
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N-1
co — 1 _Z Hpp-1
PO = NP R@IY exp( o (e)y"> ?

n=0
where |-| denotes the determinant of its argument.
In this paper, we aim at finding antenna locations z,, ...,z » that lead
to minimal MSE on parameter vector 8. We do so by resorting to lower
bounds of the MSE, which are described in the next sections.

2.2. Lower bounds of the MSE

The Cramér-Rao and Barankin-type bounds are lower bounds of
the MSE for unbiased estimators, which can be shown to satisfy the
following matrix inequalities (in the sense that the difference between
the left-hand side and the right-hand side is a nonnegative-definite
matrix) [10]:

C,>Cp > Cey 4

where C, = E[(B(Y)—6,)(0(Y)—6,)T] is the MSE matrix, Cc is the CRB
and Cy is a BTB. The CRB is known to be the inverse of the Fisher infor-

mation matrix (FIM) F = E[‘m%e(yﬂ) a“’%@], where derivatives are

evaluated at the true parameter vector 6, that is Ccg = F~!. Barankin-
type bounds can be expressed in various ways (see [10] for several
examples). In this paper, we investigate the so-called Hammersley—
Chapman-Robbins bound [12], which holds for estimators which are
unbiased at a number K of test points denoted by 0,, k =1, ..., K. This
bound is given by

CB=H(B—11T)"HT (5)

where H=[6, — 0, ...,0 — 0,1, and B is the (K x K) Barankin matrix
whose (i, j)th component is given by

p(Y;0,) p(Y:6))
B, =B|—0—— L 11
Y p(Y;6) p(Y;6y)

(6)

2.2.1. Cramér-Rao lower bound

The CRB for the (unconditional) signal model (1) has been well
studied in the array processing literature [18-20]. The expression of
the FIM results from the Slepian-Bangs formula, which leads to [19]

Hp—T _1,0vecR
)IRT @RS, @
where ® denotes the Kronecker product, and vec(-) represents the
vectorization operator. The vectorized covariance matrix vec R can be
written (after dropping the dependence of the array response vector a

on ¢ for simplicity) as

dvecR

FzN( 907

vecR=S (a* ® a) + o vecl, (8)

where (-)* denotes complex conjugation. The derivatives of vecR can
subsequently be computed as [21]

9 VSIC R = —j 2TITS(diag vecd,)(a* ® a) 9

IvecR _ 127 g(diagvec A,) (a* ® a) 10
om A 4

where 4, and A, are (P x P) matrices whose elements are respectively

(zi=z;) m(zi—z;)

Vi-i2—m? and (4,); = yi =, = Viciz—m?’

i,j = 1,..., P, the diag(-) operator converts its vector argument to a
diagonal matrix with the elements of the vector on the diagonal, and
finally

dvecR
oS 902
It can be noted that expressions (9) and (10) provided here are rewrit-
ten from those in [21], in order to highlight the role of the array
baseline lengths (through matrices 4, and 4) in the Fisher information.
A closed-form expression of the stochastic CRB for DOAs has been
derived in [20], for instance. In our case, by denoting as CRB(/, m) the

given by (4,);; = x; — x; —

=vecl an
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block of the CRB matrix Ccg that pertains to parameters / and m, this
expression becomes:
1+ PSNR

CRB(I, m) =
2N P SNR?

Re [DHHaJ‘D]’l (12)

where IT,* =1- %a(f) a(#), and D = 0;%) =

2 ]
1= X - ==z
5 [( Vi-12—m? )©
m . .
a,(y—-—z Oa],anhIChX, and z denote the vectors [x;, ..., xp]"
(y e ) y [x; Pl

, [¥1...,yp]l" and [z, ...,zp]" stacking the x-, y- and z-coordinates of
the antennas, respectively, and ® denotes the Hadamard (element-wise)
product. Similarly, an expression of the CRB for the source power .S,
denoted as CRB(.S), can be obtained as CRB(S) = %.
2.2.2. Hammersley—Chapman—Robbins bound

For the model in the form of (1), it can be shown that the elements
of the matrix B in (5)-(6) are given by

b IR©,)| " a3
¥ =\ TR®)IR®,)| [R-16,) + R0, ~R-1(6)] )

provided the determinant |R~!(6,) + R=1(9,) — R~!(6))| is not zero [15,
22]. Explicit expressions for the determinants in (13) were obtained
in [15] for a similar model, but with a known noise covariance matrix.
Following these lines, similar expressions for the determinant and the
inverse of R(@) can be obtained:

IR(0)| = 6*F(1 + PSNR) 14
with SNR = S/62, and

RL0) = ﬁ [1- a6 a" )] (15)

after defining a(0) = \/Ea(f), with C = H?SI;IR. The expression of the

third determinant in the denominator of (13) obtained in [15] can also
be extended to the present case, and shown to be

D;;(8y) = R'(0) +R7'(9,) - R™'(8))
= /P [+ Py Co)(1 = P, C)(1 = Py, C)
+p0pi (1= Pp; C) |88 > + pg p; (1 = P p; C) 12y"a, 1
—pip; (1+ P pyCy)la"a >

+2Re(p0 pip; (ﬁo“ﬁj)(a,.Hﬁo)(ﬁjHﬁ,.))] (16)
where we have used the following definitions:
a, = \/Ca@)) a7
NR, S;/c?
€= +SP IS{II\IR,- i +(P (/S /)a?) (a8
vy =07 +0;" —0;" 19)
pi = 07/1s (20)

and the subscripts i, j, and 0 of an unknown parameter (I, m, S or ¢2)
in the expressions above respectively refer to the ith test point, the jth
test point, and the true value for this parameter. Finally, by plugging
(14) and (16) into (13), the elements of B are obtained as

N
B - o?P(1+ PSNR) 1)
Y 07707"(1+ PSNR)(1 + P SNR;) D;;(6,) ’

and the Barankin-type bound can be computed using (5).
3. Optimization of antenna placement
3.1. Optimization problem set-up
In this paper, array design is formulated as an antenna selection

problem. We do so by defining a set of P candidate antenna locations,
and by selecting a subset of M antenna among those P candidates,
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which minimizes a predefined cost function. In our study, this criterion
will be based on either the CRB matrix Ccg, or the BTB matrix Cj.
Specifically, we seek to solve the following optimization problem:

min f (C(w)) 22)
stlTw=M

we (0,1}
where w = [w), ..., wp]" denotes the antenna selection vector, i.e., w, =

1 if the pth antenna is selected, and w, =0 if it is not, and f(C(w))
is the cost function related to the matrix lower bound C(w) chosen as
selection criterion. Several functions f are possible [23], relating to
different types of optimality. In this study, we will use the trace of the
matrix bound, i.e., f(C(w)) = tr(C(w)), as it minimizes the total MSE
of the unknown parameters. The noise variance ¢ is assumed to be
unknown, but is treated as a nuisance parameter, which means that
the matrix C(w) appearing in the cost function will actually be the
(upper-left) 3 x 3 block of Ccg or Cg, corresponding to the MSE of
the parameters of interest /, m, and S. Finally, the antenna selection
problem can be stated as

min tr(PCw¥T) (23)

stl'w=M
we {0,1}F

where ¥ = [I 0] is the (3 x 4) matrix which extracts the elements
corresponding to the parameters of interest (I, m, S), C(w) either
denotes Ccp or C, and M is the antenna budget (that is the number
of selected antennas).

It is generally possible to solve the problem (23) efficiently by
using convex relaxation or greedy approaches. However, it is not easy
to adapt these methods to the case of a BTB, due to the presence
of (possibly many) test points. In this paper, since we aim at com-
paring the relevance of the CRB-based and the BTB-based criteria
for antenna placement, we study a reduced-dimension problem where
an exhaustive search method is affordable. Namely, inspiring from
existing interferometric antenna array geometries, we consider the case
of star-shaped arrays, although it is also possible to apply the described
methodology to other (e.g., closed) configurations. We define a maxi-
mum aperture D, for the antenna array, and a number My of straight
branches, evenly spaced in angle. Each branch contains a number L of
uniformly spaced candidate antenna locations. The antenna budget is
fixed to M = M; Mp, where M| is the number of selected antenna on a
branch. The antenna selection procedure is performed by evaluating the
cost function for the whole array with M branches, and by carrying
out an exhaustive search of the M; antennas, among the L candidates,
that minimize this cost function (all the branches are imposed to be
identical).

3.2. Practical computation of the Barankin bound

The test points 0, used to compute the Barankin bound can be freely
chosen, however they should be selected so as to obtain the tightest
bound possible. An approach to do so consists in defining a grid over
the parameter space. However, this rapidly becomes unfeasible as the
number of unknown parameters, and thus the number of test points,
increase, as the computation of Cy requires inversion of the (K x K)
matrix B — 117, where K is the number of test points. In order to
reach a trade-off between computation complexity and tightness of the
bound, test points can be chosen at sidelobe locations for each unknown
parameter. This is particularly useful regarding the source direction
(parameters / and m), however there exists no sidelobes for source
and noise powers S and ¢?. Consequently, in the sequel, the BTB is
computed using 20 test points for (/, m) chosen in (-1, 1)x(-1, 1) around
sidelobes of the array beampattern for each candidate configuration,
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Fig. 1. Antenna array obtained from (a) the CRB-based criterion, (b) the BTB-based criterion.
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Fig. 2. Coverage of the uv-plane obtained for a snapshot observation (a)-(b) and for a 4-hour observation (c)-(d), for the CRB-based array (on the left: (a) and (c)), and the

BTB-based array (on the right: (b) and (d)).

while 3 test points are used for S and ¢? in the vicinity of their true
values, namely (0.9,0.99,1.1)S, and (0.9, 0.99,1,1)03, respectively. It
should be noted that these test points are used to evaluate the bound
numerically and are intended to span the parameter space. After having
performed extensive numerical experiments with different test-point
values, we have not noticed any significant variation in the value of
the bound, and finally chose these values.

4. Numerical results

In this section, we compare the performance of arrays obtained from
the CRB and the BTB in terms of single-source parameter estimation
and imaging abilities. We consider the case of an array with Mz =3
straight branches, with M; = 7 antennas on each branch (thus a total
of M =21 antennas). We set D, = 104, and each branch consists in
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Fig. 3. Array beampatterns of the CRB-based array (a) and the BTB-based array (b), 1D-comparison of both along the / = 0 direction (c) and along the diagonal (! = m) direction

.

L =20 candidate antenna locations with 1/4-interspacing. We consider
a zenithal observation, i.e., I = m = 0, with N = 100. It is worth
noting that, at high SNR, the BTB coincides with the CRB, so that both
criteria are expected to yield equivalent results. At lower SNR, since the
BTB reflects the threshold effect, while the CRB does not, both criteria
substantially differ, and the BTB seems a more relevant choice. In the
following experiments, we set SNRgg = 10log;q SNR = —12 dB.

The results of the proposed antenna selection procedure are pre-
sented in Fig. 1. It can be noticed that the CRB-based criterion leads
to a configuration where antennas are located at the very ends of the
branches. On the other hand, the BTB leads to a somewhat different
configuration, with closely-spaced antennas near the array center, and
an increasing spacing towards the ends of the branches.

It is instructive to assess an array lay-out in terms of baseline diver-
sity (or completeness of spatial frequency domain sampling), through
the so-called uv-plane coverage. It corresponds to the collection of the
array normalized baseline vectors, i.e., S, = {u; = (§; = &;)/4, i,j =
1,..., M}, projected on the plane orthogonal to the reference direction
(in this case the direction / = m = 0). For a single-snapshot zenithal ob-
servation, it coincides with the notion of difference coarray that arises
in array processing [24]. The uv-plane fills up during the observation,
as the Earth rotates and the angle with which the array is seen from
the source reference direction changes. The uv-plane coverage thus pro-
vides insight about the imaging capabilities of a radio interferometer
as it is linked to the point-spread function of the instrument through a
Fourier transform [4], and it determines its ability to capture different
angular scales on the sky. Fig. 2 presents the uv-plane coverage of arrays
obtained from CRB and BTB minimization, for a snapshot observation
as well as a for 4-hour observation, where the antennas are assumed
to be placed on the surface of the Earth at a latitude of 47°. It can be

observed that the BTB-based array has a higher baseline diversity than
the CRB-based array, and thus a superior coverage of the uv-plane. In
Fig. 3, we provide the array beampatterns of both configurations. For
an easier comparison, we also plot these beampatterns along the / =0
direction as well as the diagonal (! = m) direction. It can be seen that
the mainlobe of the BTB-based array is only slightly wider while its
sidelobes are considerably lower than those of the CRB-based array.

Then, both arrays are compared in terms of estimation performance
for the source parameters (DOA and intensity) according to model (1)-
(3) in Figs. 4 and 5. The absolute biases of the MLE for the estimation
of / and .S were computed by running 10 000 Monte-Carlo simulations,
and are shown in Figs. 4(a) and 5(a), respectively. The MSE of the MLE
(also obtained from Monte-Carlo simulations) and the corresponding
CRB and BTB for the estimation of / and .S are shown in Figs. 4(b)
and 5(b), respectively. Results regarding estimation of m are identical
to those for /, and are consequently not shown here. Regarding DOA
estimation (Fig. 4), the behavior of the BTB reflects that of the MSE
fairly well, with a difference of about 7 dB between the SNR threshold
predicted by the BTB and that of the MLE, for the BTB-based array.
Most importantly, the threshold SNR for the BTB-based array is about
5 dB below that of the CRB-based array, leading to a significantly
lower MSE over a wide SNR range (from —11 dB to —5 dB) for the
BTB-based array. The accuracy gained in this SNR range comes at the
expense of asymptotic accuracy, as the CRB for the CRB-based array is
slightly lower than that of the BTB-based array (which is related to the
difference in the main-lobe width noticed in Fig. 3). On the other hand,
it is seen from Fig. 5 that the estimation performance of both arrays
regarding the source intensity S is essentially the same. We conclude
that the BTB seems more suitable than the CRB for array design, as
it leads to an array that yields superior source parameter estimation
performance in this regime.
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solid lines with point markers respectively represent the (square roots of the) CRBs and BTBs, and RMSEs.

These results clearly illustrate how the CRB and the BTB lead to
different array configurations. To a fairly large extent, these results
can be effectively explained from known results in array processing.
In particular, it was shown in [22] that the CRB for the DOA of a
single source, which relates to small estimation errors, is linked to the
second derivative of the array beampattern at the origin, that is its
curvature. Consequently, a CRB-based design criterion only focuses on
the thinness of the mainlobe, and thus systematically results in an array
with a maximal aperture, at the expense of the sidelobe level. It can
also be seen from (9) and (10) that long baselines imply large values in
matrices A, and 4, arising in the FIM, hence contributing to minimize
the CRB. In contrast, the BTB-based criterion yields a configuration
with less antennas concentrated at the edges, and thus a synthesized
beam with lower sidelobes. It is also worth noting that assuming the
source intensity .S is unknown does not affect the SNR threshold value
on the DOA estimation, compared with a situation where S would be
known [25].

Finally, we assess the performance of both array geometries in terms
of imaging accuracy, as can be done in radio astronomy. In this case,
the antenna arrays receive signals from more than a single source.
Although the single-source assumption used to derive our design cri-
teria does not actually hold in this case, it is insightful to assess the
imaging capability of the obtained geometries. A test image of the

M51 galaxy, that is assumed to represent the true source structure, is
given in Fig. 6(a). An imaging algorithm, based on an Expectation—
Maximization (EM) approach including sparsity constraints [26], is
applied to obtain images for both CRB- and BTB-based arrays. These
images are computed in a realistic radio-astronomy scenario, where the
antennas are assumed to be placed on the surface of the Earth, with
the array center at a latitude of 47°, and taking Earth rotation into
account. As usually done in radio interferometry, the imaging method
makes use of visibility data that correspond to the correlations of the
antenna signals, obtained as ﬁi = % Z;Z (711) NV Li=1, » Nonapshots
averaged over N antenna signal samples. The obtained images for the
CRB-based and the BTB-based array are provided in Figs. 6(b) and 6(c),
for a 4-hour observation time, using Nypapshor = 48 snapshots, obtained
by averaging N = 5- 10° antenna signal samples, which corresponds to
N, snapshot M 2 = 21 168 visibilities. Finally, we report in Table 1

vis =
the normalized MSE (NMSE) for the same image reconstruction set-up,
averaged over 100 noise realizations. The NMSE metric is defined by

Zi,jls(),ij - Sijlz
X101
where S;; is the true (i, j)-pixel intensity and S‘\,.j is the estimated

(i, j)-pixel intensity. It can be seen that the BTB-based array performs
markedly better in terms of imaging accuracy than the CRB-based

NMSE = @4
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MLE absolute bias for s

—— CRB array
=== BTB array

Absolute Bias

T T T T T
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(a)

RMSE and Bounds on s

— sqrt(CRB) for CRB array
=== sqrt(BTB) for CRB array
@ RMSE for CRB array
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T T T T T T T T
—20.0 -17.5 -15.0 -12.5 -10.0 =7.5 =5.0 =2.5
SNR (dB)

(b)

Fig. 5. Comparison of the estimation performance of direction cosine S: (a) absolute bias of the MLE for both CRB-based and BTB-based array geometries, and (b) square roots
of the CRBs and BTBs, and RMSEs, for both arrays. Red curves regard the CRB-based array, while blue curves regard the BTB-based array. In (b), solid lines, dashed lines, and
solid lines with point markers respectively represent the (square roots of the) CRBs and BTBs, and RMSEs.

(a) (b) ©

Fig. 6. Image of the M51 galaxy used as sky model (true image, with size 128 x 128) (a), and imaging results for the CRB-based array (b) and the BTB-based array (c).

one. These results confirm that the BTB-based array design criterion way implies that the proposed BTB-based design criterion is optimal

is more suitable than that based on the CRB for an imaging purpose. for imaging. From Fig. 2, it can be seen that there is a range of spatial
The fact that the BTB allows to handle the sidelobe level, as explained frequencies which are not sampled, resulting in a ring-shaped hole in
above, translates into less ambiguities than the CRB criterion in the the uv-domain for a synthesis observation. The single-source model
reconstructed images, as can be seen from Fig. 6. Of course, this in no used does of course not fully grasp the complexity of the imaging
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Table 1

NMSEs for M51 image reconstruction using CRB-
based and BTB-based arrays, obtained after averaging
over 100 Monte—Carlo trials (standard deviations are
indicated between brackets).

NMSE
CRB array 0.33 (£0.005)
BTB array 0.09 (+0.005)

problem, but the results in terms of imaging argue in favor of a BTB-
type design criterion. In the end, it can be viewed as a criterion based
on the expected performance of image reconstruction algorithms, and
may be considered for the selection of a radio-interferometer configu-
ration. The CRB may still prove relevant for array design, but would
require the use of more sophisticated models (with more than a single
source) to obtain geometries that mitigate the sidelobe level in the array
beampattern.

5. Conclusions

In this article, we have compared two antenna selection approaches,
respectively based on the CRB and a BTB. The performance of both
optimized array geometries has been evaluated based on several criteria
relevant to parameter estimation, such as a source’s DOA and intensity,
and to radio-interferometric imaging applications, such as the uv-plane
coverage, the array beampattern and the recovery of a more complex
radio source structure. Simulation results demonstrate that a design
criterion based on the BTB leads to an optimal trade-off (in the MSE
sense) between the array’s main-lobe width and sidelobe level, resulting
in (i) a lower overall MSE for the parameters of a point source over
a fairly wide range of (moderate) SNR, and (ii) an enhanced imaging
capability of the array compared with a CRB-based design criterion.
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